Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (02): 726-739.DOI: 10.16085/j.issn.1000-6613.2018-1145
• Invited review • Previous Articles Next Articles
Wufan LIU(),Chufang CHEN,Wenhui PAN,Jia XIONG,Junle QU,Zhigang YANG()
Received:
2018-05-30
Revised:
2018-10-01
Online:
2019-02-05
Published:
2019-02-05
Contact:
Zhigang YANG
通讯作者:
杨志刚
作者简介:
<named-content content-type="corresp-name">刘毋凡</named-content>(1993—),男,硕士研究生,研究方向为受激辐射损耗超分辨成像及荧光寿命成像。E-mail:<email>749969710@qq.com</email>。|杨志刚,副教授,硕士生导师,研究方向为生物光子学影像材料、超分辨成像及荧光寿命成像。E-mail:<email>zhgyang@szu.edu.cn</email>。
基金资助:
CLC Number:
Wufan LIU, Chufang CHEN, Wenhui PAN, Jia XIONG, Junle QU, Zhigang YANG. Research progress on stimulated emission depletion using fluorescent probes[J]. Chemical Industry and Engineering Progress, 2019, 38(02): 726-739.
刘毋凡, 陈楚芳, 潘文慧, 熊佳, 屈军乐, 杨志刚. 受激辐射损耗超分辨荧光成像探针研究进展[J]. 化工进展, 2019, 38(02): 726-739.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-1145
1 | ABBE E . Beiträge zur theori des mikroskops und der mikroskopischen wahrnehmung[J]. Archiv Für Mikroskopische Anatomie, 1873, 9: 413-418. |
2 | HELMHOLTZ H VON . Die theoretische grenze für die leistungsfähigkeit der mikroskope[J]. Aus Poggendorff’s Annalen Jubelband, 1874(s): 557-584. |
3 | HELL S W , KROUG M . Ground-state-depletion fluorescence microscopy: a concept for breaking the diffraction resolution limits[J]. Applied Physics B: Lasers Optics, 1995, 60(5): 495-497. |
4 | HARKE B , ELLER J , ULLAL C K , et al . Resolution scaling in STED microscopy[J]. Optics Express, 2008, 16(6): 4154-4162. |
5 | HELL S W , JAKOBS S , KASTRUP L . Imaging and writing at the nanoscale with focused visible light through saturable optical transitions[J]. Applied Physics A: Materials Science Process, 2003, 77(7): 859-860. |
6 | HELL S W . Strategy for far-field optical imaging and writing without diffraction limit[J]. Physics Letters A, 2004, 326(1/2): 140-145. |
7 | HEINTZMANN R , CREMER C G . Lateral modulated excitation microscopy: improvement of resolution by using a diffraction grating[J]. Proceeding of Society Photonics International Electronics, 1998, 3568:185-196. |
8 | FROHN J T , KNAPP H F , STEMMER A . True optical resolution beyond the Rayleigh limit achieved by standing wave illumination[J]. Proceedings of the National Academy of Sciences U.S. A ., 2000, 97 (13): 7232-7236. |
9 | GUSTAFSSON M G L . Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy[J]. Journal Microscopy, 2000, 198: 82-87. |
10 | GUSTAFSSON M G L . Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution[J]. Proceedings of the National Academy of Sciences U.S.A., 2005, 102(37): 13081-13086. |
11 | BETZIG E , PATTERSON G H , SOUGRAT R ,et al . Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 2006, 313 (5793): 1642-1645. |
12 | RUST M J , BATES M , ZHUANG X . Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)[J]. Nature Methods, 2006, 3(10): 793-795. |
13 | HESS S T , GIRIRAJAN T P K , MASON M D . Ultra-high resolution imaging by fluorescence photoactivation localization microscopy[J]. Biophysical Journal, 2006, 91(11): 4258-4272. |
14 | DICKSON R M , CUBITT A B , TSIEN R Y , et al . On/off blinking and switching behavior of single molecules of green fluorescent protein[J]. Nature, 1997, 388(6640): 355-358. |
15 | PATTERSON G H , LIPPINCOTT-SCHWARTZ J . A photoactivatable GFP for selective photolabeling of proteins and cells[J]. Science, 2002, 297(5588): 1873-1877. |
16 | HARKE B , KELLERR J , ULLAL C K , et al . Resolution scaling in STED microscopy[J]. Optics Express, 2008, 16(6): 4154-4162. |
17 | HELL S W , JAKOBS S , KASTRUP L . Imaging and writing at the nanoscale with focused visible light through saturable optical transitions[J]. Applied Physics A: Material Science Process, 2003, 77(7): 859-860. |
18 | HELL S W . Strategy for far-field optical imaging and writing without diffraction limit[J]. Physics Letters A, 2004, 326(1/2): |
140−145. | |
19 | DERTINGER T , COLYER R , IYER G , et al . Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI)[J]. Proceedings of National Academy Sciences U.S.A., 2009, 106(52): 22287-22292. |
20 | DERTINGER T , COLYER R , VOGEL R , et al . Achieving increased resolution and more pixels with superresolution optical fluctuation imaging [J]. Optics Express, 2010, 18(18): 18875-18885. (SOFI) |
21 | WU D , SHEN Y , CHEN J , et al . Naphthalimide-modified near-infrared cyanine dye with a large stokes shift and its application in bioimaging[J]. Chinese Chemical Letters, 2017, 28: 1979-1982. |
22 | XU Z , CHEN J , HU L-L , et al . Recent advances in formaldehyde-responsive fluorescent probes[J]. Chinese Chemical Letters, 2017, 28: 1935-1942. |
23 | HOTTA J , FRON E , DEDECKER P , et al . Spectroscopic rationale for efficient stimulated-emission depletion microscopy fluorophores[J]. Journal of American Chemical Society, 2010, 132: 5021-5023. |
24 | WURM C A , KOLMAKOV K , GOTTERT F , et al . Novel red fluorophores with superior performance in STED microscopy[J]. Optical Nanoscopy, 2012, 1:7. |
25 | SCHILL H , NIZAMOV S , BOTANELLI F , et al . 4-Trifluoromethyl-substituted coumarins with large stokes shifts: synthesis, bioconjugates, and their use in super-resolution fluorescence microscopy[J]. Chemistry: European Journal, 2013, 19: 16556–16565. |
26 | ERDMANN R S , TAKAKURA H , THOMPSON A D ,et al . Super-resolution imaging of the golgi in live cells with a bioorthogonal ceramide probe[J]. Angewandte Chemie International Edition, 2014, 53(38): 10242-10246. |
27 | LUKINAVIČIUS G , REYMOND L , ĎESTE E , et al . Fluorogenic probes for live-cell imaging of the cytoskeleton[J]. Nature Methods, 2014, 11: 731-737. |
28 | ĎESTE E , KAMIN D , GÖTTFERT F , et al . STED nanoscopy reveals the ubiquity of subcortical cytoskeleton periodicity in living neurons[J]. Cell Reports, 2015, 10: 1246-1251. |
29 | KOLMAKOV K , HEBISCH E , WOLFRAM T , et al . Far-red emitting fluorescent dyes for optical nanoscopy: fluorinated silicon-rhodamines (SiRF dyes) and phosphorylated oxazines[J]. Chemistry : European Journal, 2015, 21: 13344-13356. |
30 | KASPER R , HARKE B , FORTHMANN C , et al . Single-molecule STED microscopy with photostable organic fluorophores[J]. Small, 2010, 6: 1379-1384. |
31 | HONIGMANN A , MUELLER V , TA H, et al . Scanning STED-FCS reveals spatiotemporal heterogeneity of lipid interaction in the plasma membrane of living cells[J]. Nature Communications, 2014, 5: 5412-5423. |
32 | VICIDOMINI G , TA H, HONIGMANN A , et al . STED-FLCS: an advanced tool to reveal spatiotemporal heterogeneity of molecular membrane dynamics[J]. Nano Letters, 2015, 15(9): 5912-5918. |
33 | HANNE J , FALK H J , GÖRLITZ F ,et al . STED nanoscopy with fluorescent quantum dots[J]. Nature Communications, 2015, 6: 7127-7135. |
34 | PERSSON F , BINGEN P , STAUDT T , et al . Fluorescence nanoscopy of single DNA molecules by using stimulated emission depletion (STED) [J]. Angewandte Chemie International Edition, 2011, 50: 5581-5583. |
35 | LUKINAVIČIUS G , BLAUKOPF C , PERSHAGEN E , et al . SiR-Hoechst is a far-Red DNA stain for live-cell nanoscopy[J]. Nature Communications, 2015, 6: 8497-8505. |
36 | HOFMANN M , EGGELING C , JAKOBS S , et al . Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins[J]. Proceedings of National Academy Sciences U.S.A.,2005, 102: 17565-17569. |
37 | HELL S W , JAKOBS S , KASTRUP L . Imaging and writing at the nanoscale with focused visible light through saturable optical transitions[J]. Applied Physics A, 2003, 77: 859-860. |
38 | LUKINAVIČIUS G , BLAUKOPF C , PERSHAGEN E , et al . SiR-Hoechst is a far-red DNA stain for live-cell nanoscopy[J]. Nature Communications, 2015, 6: 8497-8505. |
39 | LAVIOE-CARDINAL F , JENSEN N A , WESTPHAL V , et al . Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics[J]. ChemPhysChem, 2014, 15: 655-663. |
40 | BRAKEMANN T , STIEL A C , WEBER G ,et al . A reversibly photoswitchable GFP-like protein with fluorescence excitation decoupled from switching[J]. Nature Biotechnology, 2011, 29: 942-947. |
41 | GROTJOHANN T , TESTA I , LEUTENEGGER M , et al . Diffraction-unlimited all-optical imaging and writing with a photochromic GFP[J]. Nature, 2011, 478: 204-208. |
42 | LI D , QIN W , XU B , QIAN J , et al . AIE nanoparticles with high stimulated emission depletion efficiency and photobleaching resistance for long-term super-resolution bioimaging[J]. Advanced Materials, 2017, 29: 1703643-1703451. |
43 | HANNE J , FALK H J , GÖRLITZ F , et al . STED nanoscopy with fluorescent quantum dots[J]. Nature Communications, 2015, 6: 7217-7222. |
44 | LIU Y J , LU Y Q , YANG X S , et al . Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy[J]. Nature, 2017, 543: 229-233. |
45 | YE S , YAN W , ZHAO M , et al . Low-saturation-intensity, high-photostability, and high resolution STED nanoscopy assisted by CsPbBr3 quantum dots[J]. Advanced Materials, 2018, 30(23): 1800167. |
[1] | LI Mengyuan, GUO Fan, LI Qunsheng. Simulation and optimization of the third and fourth distillation columns in the recovery section of polyvinyl alcohol production [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 113-123. |
[2] | QIU Mofan, JIANG Lin, LIU Rongzheng, LIU Bing, TANG Yaping, LIU Malin. Research progress of particle-scale model in chemical reaction numerical simulation of gas-solid fluidized bed [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5047-5058. |
[3] | YU Shan, DUAN Yuangang, ZHANG Yixin, TANG Chun, FU Mengyao, HUANG Jinyuan, ZHOU Ying. Research progress of catalysts for two-step hydrogen sulfide decomposition to produce hydrogen and sulfur [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3780-3790. |
[4] | LU Jianmei. Recent research progress of flexible adsorption materials [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2781-2798. |
[5] | TAO Mengqi, LIU Meihong, KANG Yuchi. Analysis of fluid across a single cylinder and two parallel cylinders in a micro flow channel by micro-PIV [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2836-2844. |
[6] | LYU Xuedong, LUO Faliang, LIN Haitao, SONG Danqing, LIU Yi, NIU Ruixue, ZHENG Liuchun. Recent progress of synthesis technology and gas barrier research of poly(butylene succinate) [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2546-2554. |
[7] | PANG Nanjiong, WANG Xiaoling, LIAO Xuepin, SHI Bi. Separation of boron isotopes by collagen fibers-immobilized black wattle tannin [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2616-2625. |
[8] | TIAN Yuan, LOU Shujie, MENG Shanru, YAN Jingru, XIAO Haicheng. Recent progress of Co-based catalysts for higher alcohols synthesis form syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1869-1876. |
[9] | ZHANG Chenguang, FENG Shuo, XING Yuye, SHEN Boxiong, SU Lichao. Research progress of isolated Cu2+ in copper based zeolite NH3-SCR catalyst for diesel vehicles [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1321-1331. |
[10] | SHANG Xiaobiao, LI Guangchao, XIAO Liping, BAI Yongzhen, XIAO Renyou, LI Jiajian, ZHANG Zhihao. Wave transmission performance of zirconium aluminum silicate fiberboard under large temperature gradient [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1551-1561. |
[11] | DUAN Yihang, GAO Ningbo, QUAN Cui. Effect of hydrothermal treatment on pyrolysis characteristics and kinetics of oily sludge [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 603-613. |
[12] | HUANG Wei, CHU Zheng, REN Lei, LI Shan. Application of carbon-based solid acid in hydrogenation of nitrobenzene to p-aminophenol [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 272-281. |
[13] | TENG Xinyu, ZHANG Guohua, HU Chenshu, ZHU Cheng, YU Dan, LIU Di, LIU Sha. Analysis on hydrogen energy economy and low cost of hydrogen source in typical cities of China [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6295-6301. |
[14] | WAN Nianfang. Research progress of membrane electrode assembly of proton exchange membrane water electrolysis for hydrogen production [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6385-6394. |
[15] | CHEN Yu, WANG Jiajia, TANG Lin. Preparation and performance of floating carbon nitride photocatalyst CNx@mEP [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6477-6488. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |