Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (02): 834-841.DOI: 10.16085/j.issn.1000-6613.2017-2594
• Chemical processes and equipment • Previous Articles Next Articles
Jing FANG,Mengyu DIAO,Chunli LI(),Bihan XUAN
Received:
2017-12-15
Revised:
2018-11-19
Online:
2019-02-05
Published:
2019-02-05
Contact:
Chunli LI
通讯作者:
李春利
作者简介:
<named-content content-type="corresp-name">方静</named-content>(1977—),女,博士,教授,主要从事分离与纯化研究。|李春利,博士,教授,主要从事分离与纯化研究。E-mail:<email>lichunli_hebut@126.com</email>。
基金资助:
CLC Number:
Jing FANG, Mengyu DIAO, Chunli LI, Bihan XUAN. Study on thermodynamic analysis and energy saving of heat integrated distillation column[J]. Chemical Industry and Engineering Progress, 2019, 38(02): 834-841.
方静, 刁梦宇, 李春利, 轩碧涵. 内部热耦合塔的热力学分析和节能研究[J]. 化工进展, 2019, 38(02): 834-841.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2017-2594
塔段 | 内径 /mm | 壁厚 /mm | 填料层 高度/mm | 填料 类型 | 填料尺寸 /mm | 填料 材质 | 塔段高度/mm |
---|---|---|---|---|---|---|---|
提馏 | 309 | 8 | 2800 | θ环 | 5×5 | 304L不锈钢 | 4150 |
精馏 | 311 | 4 | 2800 | CY700 | 195×75 | 304L不锈钢 | 4150 |
塔段 | 内径 /mm | 壁厚 /mm | 填料层 高度/mm | 填料 类型 | 填料尺寸 /mm | 填料 材质 | 塔段高度/mm |
---|---|---|---|---|---|---|---|
提馏 | 309 | 8 | 2800 | θ环 | 5×5 | 304L不锈钢 | 4150 |
精馏 | 311 | 4 | 2800 | CY700 | 195×75 | 304L不锈钢 | 4150 |
参数 | 数值 |
---|---|
进料质量组成(乙醇)/% | 45 |
进料流量/L·h-1 | 73 |
进料温度/℃ | 33 |
塔顶产品质量纯度(乙醇)/% | 89.5 |
塔釜产品质量纯度(乙醇)/% | 2.9 |
提馏段操作压力/atm | 1 |
精馏段操作压力/atm | 1.5~2.6(步长为0.1) |
参数 | 数值 |
---|---|
进料质量组成(乙醇)/% | 45 |
进料流量/L·h-1 | 73 |
进料温度/℃ | 33 |
塔顶产品质量纯度(乙醇)/% | 89.5 |
塔釜产品质量纯度(乙醇)/% | 2.9 |
提馏段操作压力/atm | 1 |
精馏段操作压力/atm | 1.5~2.6(步长为0.1) |
压缩比 | 冷凝水流量/L·h-1 | 上水温度/℃ | 下水温度/℃ |
---|---|---|---|
1.5 | 280 | 30 | 73 |
1.6 | 296 | 28 | 62 |
1.7 | 288 | 32 | 63 |
1.8 | 268 | 31 | 63 |
1.9 | 253 | 33 | 68 |
2.0 | 248 | 34 | 65 |
2.1 | 218 | 30 | 65 |
2.2 | 205 | 30 | 65 |
2.3 | 224 | 37 | 74 |
2.4 | 220 | 30 | 68 |
2.5 | 237 | 30 | 65 |
2.6 | 224 | 31 | 68 |
压缩比 | 冷凝水流量/L·h-1 | 上水温度/℃ | 下水温度/℃ |
---|---|---|---|
1.5 | 280 | 30 | 73 |
1.6 | 296 | 28 | 62 |
1.7 | 288 | 32 | 63 |
1.8 | 268 | 31 | 63 |
1.9 | 253 | 33 | 68 |
2.0 | 248 | 34 | 65 |
2.1 | 218 | 30 | 65 |
2.2 | 205 | 30 | 65 |
2.3 | 224 | 37 | 74 |
2.4 | 220 | 30 | 68 |
2.5 | 237 | 30 | 65 |
2.6 | 224 | 31 | 68 |
压缩比 | 蒸汽压力/MPa | 蒸汽出口温度/℃ | 冷却水流量/L·h-1 |
---|---|---|---|
1.5 | 0.21 | 86.2 | 39.2 |
1.6 | 0.20 | 90.5 | 38.0 |
1.7 | 0.19 | 86.3 | 37.4 |
1.8 | 0.18 | 89.1 | 34.7 |
1.9 | 0.18 | 85 | 33.0 |
2.0 | 0.17 | 90 | 32.2 |
2.1 | 0.16 | 86.5 | 32.8 |
2.2 | 0.15 | 92.5 | 30.1 |
2.3 | 0.15 | 90.1 | 32.5 |
2.4 | 0.15 | 86.2 | 33.4 |
2.5 | 0.15 | 85.0 | 32.3 |
2.6 | 0.15 | 84.0 | 32.8 |
压缩比 | 蒸汽压力/MPa | 蒸汽出口温度/℃ | 冷却水流量/L·h-1 |
---|---|---|---|
1.5 | 0.21 | 86.2 | 39.2 |
1.6 | 0.20 | 90.5 | 38.0 |
1.7 | 0.19 | 86.3 | 37.4 |
1.8 | 0.18 | 89.1 | 34.7 |
1.9 | 0.18 | 85 | 33.0 |
2.0 | 0.17 | 90 | 32.2 |
2.1 | 0.16 | 86.5 | 32.8 |
2.2 | 0.15 | 92.5 | 30.1 |
2.3 | 0.15 | 90.1 | 32.5 |
2.4 | 0.15 | 86.2 | 33.4 |
2.5 | 0.15 | 85.0 | 32.3 |
2.6 | 0.15 | 84.0 | 32.8 |
CDiC及压缩比 | η/% | η inc/% | ΔS/J·kg-1·K-1 | ΔS inc/% |
---|---|---|---|---|
CDiC | 18.62 | — | 14.63 | — |
P r/P s=1.8 | 25.01 | 34.29 | 10.71 | 26.76 |
P r/P s=1.9 | 24.82 | 33.30 | 10.82 | 26.04 |
P r/P s=2.0 | 24.72 | 32.76 | 11.00 | 24.81 |
P r/P s=2.1 | 24.84 | 33.39 | 11.05 | 24.47 |
P r/P s=2.2 | 24.98 | 34.17 | 11.18 | 23.57 |
P r/P s=2.3 | 25.17 | 35.16 | 11.18 | 23.55 |
P r/P s=2.4 | 25.52 | 37.06 | 11.24 | 23.13 |
P r/P s=2.5 | 26.05 | 39.92 | 11.13 | 23.90 |
P r/P s=2.6 | 25.92 | 39.19 | 11.04 | 24.52 |
CDiC及压缩比 | η/% | η inc/% | ΔS/J·kg-1·K-1 | ΔS inc/% |
---|---|---|---|---|
CDiC | 18.62 | — | 14.63 | — |
P r/P s=1.8 | 25.01 | 34.29 | 10.71 | 26.76 |
P r/P s=1.9 | 24.82 | 33.30 | 10.82 | 26.04 |
P r/P s=2.0 | 24.72 | 32.76 | 11.00 | 24.81 |
P r/P s=2.1 | 24.84 | 33.39 | 11.05 | 24.47 |
P r/P s=2.2 | 24.98 | 34.17 | 11.18 | 23.57 |
P r/P s=2.3 | 25.17 | 35.16 | 11.18 | 23.55 |
P r/P s=2.4 | 25.52 | 37.06 | 11.24 | 23.13 |
P r/P s=2.5 | 26.05 | 39.92 | 11.13 | 23.90 |
P r/P s=2.6 | 25.92 | 39.19 | 11.04 | 24.52 |
压缩比 | 冷凝器节能 分数/% | 再沸器节能 分数/% | η/% | |
---|---|---|---|---|
最佳操作 | 62.82 | 27.01 | 25.43 | 23.54 |
全部操作 | 62.25 | 25.36 | 25.23 | 24.53 |
压缩比 | 冷凝器节能 分数/% | 再沸器节能 分数/% | η/% | |
---|---|---|---|---|
最佳操作 | 62.82 | 27.01 | 25.43 | 23.54 |
全部操作 | 62.25 | 25.36 | 25.23 | 24.53 |
a,b | —— | 待分离物系中不同组成 | |
---|---|---|---|
m 1 | —— | 冷却水的质量流量, kg/s | |
m 2 | —— | 蒸汽冷凝水的质量流量, kg/s | |
Qi | —— | 对应测温点间的换热量, W | |
Q c,Q Reb | —— | 传统塔的冷凝器、 再沸器热负荷, kW | |
Q c,Q Reb' | —— | 内部热耦合塔的冷凝器、 再沸器热负荷,kW | |
r | —— | 水的汽化潜热, kJ/kg | |
S | —— | 熵值, J/(kg·K) | |
ΔS | —— | 熵增 | |
ΔS inc | —— | 熵增减少的百分比 | |
T | —— | 定性温度, K | |
T 0 | —— | 环境温度, K | |
T cw | —— | 冷却介质的温度, ℃ | |
Δt′ | —— | 蒸汽与冷凝水的温度差,℃ | |
T st | —— | 加热介质的温度, ℃ | |
ΔTi | —— | 对应测温点间的温差, ℃ | |
η | —— | 热力学效率 | |
η inc | —— | 热力学效率增加的百分比 |
a,b | —— | 待分离物系中不同组成 | |
---|---|---|---|
m 1 | —— | 冷却水的质量流量, kg/s | |
m 2 | —— | 蒸汽冷凝水的质量流量, kg/s | |
Qi | —— | 对应测温点间的换热量, W | |
Q c,Q Reb | —— | 传统塔的冷凝器、 再沸器热负荷, kW | |
Q c,Q Reb' | —— | 内部热耦合塔的冷凝器、 再沸器热负荷,kW | |
r | —— | 水的汽化潜热, kJ/kg | |
S | —— | 熵值, J/(kg·K) | |
ΔS | —— | 熵增 | |
ΔS inc | —— | 熵增减少的百分比 | |
T | —— | 定性温度, K | |
T 0 | —— | 环境温度, K | |
T cw | —— | 冷却介质的温度, ℃ | |
Δt′ | —— | 蒸汽与冷凝水的温度差,℃ | |
T st | —— | 加热介质的温度, ℃ | |
ΔTi | —— | 对应测温点间的温差, ℃ | |
η | —— | 热力学效率 | |
η inc | —— | 热力学效率增加的百分比 |
1 | KIRAN B , JANA A K . Introducing vapor recompression mechanism in heat-integrated distillation column: impact of internal energy driven intermediate and bottom reboiler[J]. AIChE J., 2015, 61(1): 118-131. |
2 | DIEZ E , OVEJERO G , ROMERO M D . Economic feasibility analysis of heat pumps in distillation to reduce energy use[J]. Appl. Therm. Eng., 2009, 29(5): 1216-1223. |
3 | JANA A K . Heat integrated distillation operation[J]. Appl. Energy, 2010, 87(5): 1477-1494. |
4 | TAKAMATSU T , LUEPRASITSAKUL V , NAKAIWA M . Modeling and design method for internal heat-integrated packed distillation column[J]. Journal of Chemical Engineering of Japan, 1988, 21(6): 595-601. |
5 | CAMPBELL JC , WIGAL KR , VAN B V, et al . Comparison of energy usage for the vacuum separation of acetic acid/acetic anhydride using an internally heat integrated distillation column (HIDiC)[J]. Separation Science and Technology, 2008, 43(9/10):2269-2297. |
6 | CHEN D W , YUAN X G , XU L H , et al . Comparison between different configurations of internally and externally heat-integrated distillation by numerical simulation[J]. Industrial & Engineering Chemistry Research, 2013, 52(16):5781-5790. |
7 | GADALLA M , JIMENEZ L , OLUJIC Z , et al . A thermo-hydraulic approach to conceptual design of an internally heat-integrated distillation column (i-HIDiC)[J]. Computers & Chemical Engineering, 2007, 31(10): 1346-1354. |
8 | NAKAIWA M , OWA M, AKIYA T , et al . Design procedure for a plate-to-plate heat-integrated distillation column[J]. Kagaku Kogaku Ronbunshu, 1986, 12(5): 535-541. |
9 | HAMAGUCHI K , YANG L L , HANZO L . Internally heat integrated distillation columns:a review[J]. Chemical Engineering Research & Design, 2003, 81(1): 162-177. |
10 | CAMPBELL J C , WIGAL K R , VAN B V, et al . Comparison of energy usage for the vacuum separation of acetic acid/acetic anhydride using an internally heat integrated distillation column (HIDiC)[J]. Separation Science and Technology, 2008, 43(9/10): 2269-2297. |
11 | SHENVI A A , HERRON D M , AGRAWA R . Energy efficiency limitations of the conventional heat integrated distillation column (HIDiC) configuration for binary distillation[J]. Springer, 2011, 1(6): 314-319. |
12 | ZHANG X , HUANG K J , CHEN H S , et al . Comparing three configurations of the externally heat-integrated double distillation columns (EHIDDiCs)[J]. Computers and Chemical Engineering, 2011, 35(10): 2017–2033. |
13 | CHEN H , HUANG K J , WANG S . A novel simplified configuration for an ideal heat-integrated distillation column (ideal HIDiC)[J]. Separation and Purification Technology, 2010, 73(2): 230-242. |
14 | WANG Y , HUANG K J , WANG S F . A simplified scheme of extemally heat-interated double distillation colunms (EHIDDIC) with three extemal heat exchangers[J]. Ind. Eng. Chem. Res., 2010, 49(7): 3349-3364. |
15 | HUANG K J , SHAN L , ZHU Q X , et al . Adding rectifying/stripping section type heat integration to a pressure-swing distillation (PSD) process[J]. Applied Thermal Engineering, 2008, 28(8): 923-932. |
16 | HUANG K J , LIU W , MA J P, et al . Externally heat-integrated double distillation column (EHIDDDIC): basic concept and general characteristics[J]. Ind. Eng. Chem. Res., 2010, 49(3): 1333-1350. |
17 | 朱自强, 吴有庭 . 化工热力学[M]. 北京: 化学工业出版社, 2010: 160. |
ZHU Z Q , WU Y T . Chemical thermodynamics[M]. Beijing: Chemical Industry Press, 2010: 160. | |
18 | MAH R S H, NICHOLAS J J , WODNIK R B . Distillation with secondary reflux and vaporization: a comparative evaluation[J]. AIChE J., 2010, 23(5): 651-658. |
19 | 陆恩锡, 李小玲, 吴震 . 蒸馏过程中间再沸器与中间冷凝器[J]. 化学工程, 2008, 36(11): 74-78. |
LU E X , LI X L , WU Z . Distillation process middle reboiler and intermediate condenser[J]. Chemical Engineering, 2008, 36(11): 74-78. | |
20 | 袁孝竞 . 蒸馏塔性能试验推荐的混合物[J]. 石油化工设计, 1996(2): 21-34. |
YUAN X J . Distillation column performance test recommended mixture[J]. Petrochemical Design, 1996(2): 21-34. | |
21 | 方静, 赵蕊, 李春利, 等 . 同轴式内部热耦合精馏塔的传热性能[J]. 化工进展, 2016 , 35(8): 2342-2349. |
FANG J , ZHAO R , LI C L , et al . Heat transfer performance of coaxial internal thermally coupled distillation column[J]. Chemical Industry and Engineering Progress, 2016, 35(8): 2342-2349. |
[1] | ZHANG Fengqi, CUI Chengdong, BAO Xuewei, ZHU Weixuan, DONG Hongguang. Design and evaluation of sweetening process with amine solution absorption and multiple desorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 518-528. |
[2] | SUN Yuyu, CAI Xinlei, TANG Jihai, HUANG Jingjing, HUANG Yiping, LIU Jie. Optimization and energy-saving of a reactive distillation process for the synthesis of methyl methacrylate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 56-63. |
[3] | LI Mengyuan, GUO Fan, LI Qunsheng. Simulation and optimization of the third and fourth distillation columns in the recovery section of polyvinyl alcohol production [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 113-123. |
[4] | ZHANG Fan, TAO Shaohui, CHEN Yushi, XIANG Shuguang. Initializing distillation column simulation based on the improved constant heat transport model [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4550-4558. |
[5] | LI Xuejia, LI Peng, LI Zhixia, JIN Dunshang, GUO Qiang, SONG Xufeng, SONG Peng, PENG Yuelian. Experimental comparation on anti-scaling and anti-wetting ability of hydrophilic and hydrophobic modified membranes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4458-4464. |
[6] | XU Jie, XIA Longbo, LUO Ping, ZOU Dong, ZHONG Zhaoxiang. Progress in preparation and application of omniphobic membranes for membrane distillation process [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3943-3955. |
[7] | ZHOU Lei, SUN Xiaoyan, TAO Shaohui, CHEN Yushi, XIANG Shuguang. Development and application of refinery short-cut column model [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2819-2827. |
[8] | CHEN Weiliang, GAO Xin, LI Hong, LI Xingang. Influence mechanism of skeleton structure of foamed SiC corrugated structured packing on the mass transfer performance [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2289-2297. |
[9] | WANG Dong, YU Pinhua, CHEN Bin, XIAO Ang, CHEN Feng, JIANG Yangyang. Energy saving optimization of cyclohexane three-effect distillation in cyclohexanone production [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2245-2251. |
[10] | HE Shanming, PAN Jiechang, XU Guozuan, LI Wenjun, LIANG Yong. Thermodynamic analysis and experimental verification of chromium and vanadium removal by ferrous salt precipitation from crude sodium tungstate solution [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2171-2179. |
[11] | DU Jinze, LI Yuansen, CAI Sichao, HE Lin, WANG Chengyang, LI Xingang. Recent advances and considerations for the harmless treatment and conversion of organic distillation residue [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 559-574. |
[12] | XIANG Sheng, WANG Chao, ZHUANG Yu, GU Siwen, ZHANG Lei, DU Jian. Design and control of pressure-swing distillation for separating methyl acetate-methanol-ethyl acetate azeotropic system [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4065-4076. |
[13] | DAI Min, YANG Fusheng, ZHANG Zaoxiao, LIU Guilian, FENG Xiao. 3E Multi-objective optimization of hexane oil distillation process based on multi-strategy ensemble optimization algorithm [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 2852-2863. |
[14] | CAI Sichao, ZHOU Jing, DU Jinze, LI Fangzhou, LI Yuansen, HE Lin, LI Xingang, WANG Chengyang. Process analysis of resource utilization of phenol-based distillation residue from coal chemical industry [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3360-3371. |
[15] | SHI Yici, PAN Yanqiu, WANG Chengyu, FAN Jiahe, YU Lu. Experimental investigations on Joule effect enhanced air gap membrane distillation for water desalination [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2285-2291. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |