Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (01): 145-154.DOI: 10.16085/j.issn.1000-6613.2018-1209
• Chemical processes and equipment • Previous Articles Next Articles
Shan-Tung TU(),Xinhai YU,Jian ZHANG
Received:
2018-06-11
Revised:
2018-10-10
Online:
2019-01-05
Published:
2019-01-05
作者简介:
涂善东(1961—),男,教授,博士生导师,研究方向为高温环境下的结构强度设计理论与寿命预测技术、微(小)化工机械系统、先进能源材料与装备、倡导全面工程教育。E-mail:<email>sttu@ecust.edu.cn</email>。
基金资助:
CLC Number:
Shan-Tung TU, Xinhai YU, Jian ZHANG. Safety valve technology of pressure systems under harsh conditions[J]. Chemical Industry and Engineering Progress, 2019, 38(01): 145-154.
涂善东, 于新海, 张健. 严苛条件下承压系统安全阀技术[J]. 化工进展, 2019, 38(01): 145-154.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-1209
1 | HOLOHAN D . A history of steam pressure relief valves[J]. Air Conditioning Heating & Refrigeration News, 2013, 249(14):1-14. |
2 | 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会 . 安全阀一般要求: GB/T12241—2005[S]. 北京:中国标准出版社,2005. |
General Administration of Quality Supervision,Inspection and Quarantine of the People’s Republic of China,Standardization Administration of the People’s Republic of China . Safety valve-general requirements: GB/T12241—2005[S]. Beijing:Standards Press of China,2005. | |
3 | 章裕昆 . 安全阀技术[M]. 北京: 机械工业出版社, 2016. |
ZHANG Y K . Technology of safety relief valve[M]. Beijing: Machinery Industry Press, 2016. | |
4 | 涂善东 . 安全4.0:过程工业装置安全技术展望[J]. 化工进展,2016,35(6): 1646-1651 |
TU Shan-Tung . Safety 4.0: an outlook on safety technology for process installations[J]. Chemical Industry and Engineering Progress, 2016, 35(6): 1646-1651. | |
5 | 康德拉契娃 T Φ(苏) . 安全阀[M]. 黄光禹, 译. 上海: 上海科学技术出版社, 1982. |
CONRADCIVA T Φ (Soviet Union) . Safety valve[M]. HUANG G Y, trans. Shanghai: Shanghai Science and Technology Press, 1982. | |
6 | SINGH A . An analytical study of the dynamics and stability of a spring loaded safety valve [J]. Nuclear Engineering & Design, 1982, 72: 197-204. |
7 | FRANCIS J , BETTS P L . Backpressure in a high-lift compensated pressure relief valve subject to single phase compressible flow[J]. Journal of Loss Prevention in the Process Industries, 1998, 11: 55-66. |
8 | FROMMANN O , FRIEDEL L . Analysis of safety relief valve chatter induced by pressure waves in gas flow [J]. Journal of Loss Prevention in the Process Industries, 1998, 11: 279-290. |
9 | FÖLLER B , SCHNETTLER A , SICHERHEITS R . Challenges in designing API safety relief valves [J]. Journal of Pressure Vessel Technology, 2003, 108: 267-272. |
10 | DARBY R . On two-phase frozen and flashing flows in safety relief values: recommended calculation method and the proper use of the discharge coefficient [J]. Journal of Loss Prevention in the Process Industries, 2004, 17: 255-259. |
11 | LEUNG J C . A theory on the discharge coefficient for safety relief valve [J]. Journal of Loss Prevention in the Process Industries, 2004, 17: 301-313. |
12 | BOCCARDI G , BUBBICO R , CELATA G P , et al . Two-phase flow through pressure safety valves. Experimental investigation and model prediction [J]. Chemical Engineering Science, 2005, 60:5284-5293. |
13 | ORTEGA A J , AZEVEDO B N . A numerical model about the dynamic behavior of a pressure relief valve[C] // 12th Brazilian Congress of Thermal Engineering and Sciences, London, England: ABCM, 2008: 1-8. |
14 | SONG X G , KIM S G , WANG L , et al . Transient flow analysis of spring loaded pressure safety valve[C]// ASME 2009 Pressure Vessels and Piping Conference. Prague, Czech: ASME, 2009: 253-258. |
15 | SONG X G , WANG L , PARK Y C . Transient analysis of a spring-loaded pressure safety valve using computational fluid dynamics (CFD) [J]. Journal of Pressure Vessel Technology, 2010, 132(5):054501-1-5. |
16 | SONG X G , JUNG J H , LEE H S , et al . 2-D dynamic analysis of a pressure relief valve by CFD[C]// Wseas International Conference on Applied Computer and Applied Computational Science. Venice, Italy: WSEAS, 2010: 136-140. |
17 | SONG X G , LEI C , PARJ Y C . Three-dimensional CFD analysis of a spring-loaded pressure safety valve from opening to re-closure[C] // Proceedings of the ASME2010 Pressure Vessels and Piping Division Conference. Washington, USA: ASME, 2010: 295-303. |
18 | YANG L , WANG Z , DEMPERTER W , et al . Experiments and transient simulation on spring-loaded pressure relief valve under high temperature and high pressure steam conditions [J]. Journal of Loss Prevention in the Process Industries, 2017, 45: 133-146. |
19 | ZHANG J , YANG L , DEMPERSTER W , et al . Prediction of blowdown of a pressure relief valve using response surface methodology and CFD techniques[J]. Applied Thermal Engineering, 2018, 133: 713-726. |
20 | 杨源泉 . 阀门设计手册[M]. 北京: 机械工业出版社, 2000. |
YANG Y Q . Handbook of valve [M]. Beijing:Machinery Industry Press, 2000. | |
21 | GREENWOOD J A , WILLIAMSON J B P . Contact of nominally flat surfaces [J]. Proceedings of the Royal Society of London, 1966, 295(1442): 300-319. |
22 | PERSSON B N . Elastoplastic contact between randomly rough surfaces [J]. Physical Review Letters, 2001, 87: 116101-1-4. |
23 | WHITEHOUS D J , ARACHARD J F . The properties of random surfaces of significance in their contact [J]. Proceedings of the Royal Society A, 1971, 316: 97-121. |
24 | BUSH A W , GIBSON R D , THOMAS T R . The elastic contact of a rough surface [J]. Wear, 1975, 35: 87-111. |
25 | HYUN S , PEI L , MOLINARI J F , et al . Finite-element analysis of contact between elastic self-affine surfaces [J]. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2004, 70: 026117-1-12. |
26 | PEI L , HYUN S , MOLINARI J F , et al . Finite element modeling of elasto-plastic contact between rough surfaces [J]. Journal of the Mechanics & Physics of Solids, 2005, 53(11): 2385-2409. |
27 | SELLGREN U , BJÖRKLUND S , ANDERSSON S . A finite element-based model of normal contact between rough surfaces [J]. Wear, 2003, 254: 1180-1188. |
28 | MEGALINGAM A , MAYURAM M M . Comparative contact analysis study of finite element method based deterministic, simplified multi-asperity and modified statistical contact models [J]. Journal of Tribology, 2012, 134: 014503-014510. |
29 | ZHANG F , LIU J , DING X , et al . An approach to calculate leak channels and leak rates between sealing surfaces [J]. Journal of Tribology, 2017, 139(1): 011708-1-11. |
30 | PERSSON B N J & YANG C . Theory of the leak-rate of seals [J]. Journal of Physics: Condensed Matter, 2012, 20: 1959-1964. |
31 | ZHENG Q , XU J , YANG B , et al . A fractal model for gaseous leak rates through contact surfaces under non-isothermal condition [J]. Applied Thermal Engineering, 2013, 52: 54-61. |
32 | LIAO C , XU X , FANG H , et al . A leakage model of metallic static seals based on micromorphology characteristics of turning flange surface[J]. Industrial Lubrication & Tribology, 2015, 67(6):572-581. |
33 | PÈREZ-RÃFOLS F , LARRSONR, ALMQVIST A . Modelling of leakage on metal-to-metal seals[J]. Tribology International, 2016, 94: 421-427. |
34 | ANWAR A A , GORASH Y , DEMPERSTER W . Application of multi-scale approaches to the investigation of sealing surface deformation for the improvement of leak tightness in pressure relief valves[M]// Advanced Methods of Continuum Mechanics for Materials and Structures. Singapore: Springer, 2016. |
35 | CAO B Y , CHEN M , GUO Z Y . Effect of surface roughness on gas flow in microchannels by molecular dynamics simulation[J]. International Journal of Engineering Science, 2006, 44: 927-937. |
36 | KUNERTC, HARTING J . Roughness induced boundary slip in microchannel flows[J]. Physical Review Letters, 2007, 99: 176001-1-4. |
37 | LILLY T C , DUNCAN J A , NOTHNAGEL S L , et al . Numerical and experimental investigation of microchannel flows with rough surfaces[J]. Physics of Fluids, 2007, 19: 492-495. |
38 | KLEINSTREUER C , KOO J . Computational analysis of wall roughness effects for liquid flow in micro-conduits[J]. Journal of Fluids Engineering, 2004, 126: 1-9. |
39 | BAHRAMI M , YOVANOVICH M M , CULHAM J R . Pressure drop of fully developed, laminar flow in rough microtubes[J]. Journal of Fluids Engineering, 2006, 128:269-280. |
40 | XIONG R , CHUNG J N . Investigation of laminar flow in microtubes with random rough surfaces[J]. Microfluidics and Nanofluidics, 2009, 8: 11-20. |
41 | CAO B Y , CHEN M , GUO Z Y . Effect of surface roughness on gas flow in microchannels by molecular dynamics simulation[J]. International Journal of Engineering Science, 2006, 44: 927-937. |
42 | GORASH Y , DDEMPESTER W , NICHOLLS W D , et al . Modelling of metal-to-metal seals in a pressure relief valve using advanced FE-analysis[C]// International Conference on Surface Effects and Contact Mechanics including Tribology Ⅻ. Valéncia, Spain: WIT, 2015:1-13. |
43 | AI L , YU X H , JIANG W , et al . Residual stress distribution in hard-facing of pressure relief valve seat[J]. Journal of Pressure Vessel Technology, 2014, 136: 061403-1-10. |
44 | 于新海, 陈浩, 周述兵, 等 . 一种预冲击提高安全阀结构完整性的装置及方法: CN104451077A[P]. 2017-01-04. |
YU X H , CHEN H , ZHOU S B , et al . Device and method for improving structural integrity of safety valve by pre impact: CN104451077A[P]. 2017-01-04. | |
45 | 邓俊秀, 朱海清 . 安全阀阀座与阀瓣研磨工艺的实验研究[J]. 表面技术, 2016, 45(4): 198-202. |
DENG J X , ZHU H Q . Experimental study on the grinding process of safe valve seat and disc[J]. Surface Technology, 2016, 45:198-202. | |
46 | 华鹏, 朱海清, 张茂力, 等 . 安全阀关闭件研磨修复粗糙度预测与实验研究[J]. 表面技术, 2018, 47(1): 242-248. |
HUA P , ZHU H Q , ZHANG M L , et al . Roughness prediction and experimental study on grinding repair of safety valve closure members[J]. Surface Technology, 2018, 47(1): 242-248. | |
47 | 邓俊秀, 朱海清, 陆顺峰 . 安全阀阀瓣研磨修复运动轨迹的研究[J]. 流体机械, 2017, 45(3): 38-41. |
DENG J X , ZHU H Q , LU S F . Study on the grinding process of safe valve disc trajectory [J]. Fluid Machinery, 2017, 45(3): 38-41. | |
48 | 刘龙, 迮晓锋, 于新海, 等 . 核安全级安全阀抗震应力分析与评定[J]. 阀门, 2009(6): 29-31. |
LIU L , ZE X F , YU X H , et al . Anti-seismic stress analysis and assessment of nuclear pressure safety valve[J]. Valve, 2009(6):29-31. | |
49 | 肖琼,李虎 . 基于Ansys的电动截止阀的应力和抗震分析[J].石油和化工设备, 2016, 19(2): 9-13. |
XIAO Q , LI H . Stress and seismic analysis of electric cut-off valve based on Ansys[J]. Petroleum and Chemical Equipment, 2016,19(2): 9-13. | |
50 | LV D W , ZHANG J , YU X H . Fluid-structure interaction dynamic simulation of spring-loaded pressure relief valves under Seismic wave [C]// 2018 2nd International Conference on Future Mechanical Engineering and Materials Engineering, Chengdu, China: FMEME, 2018. |
51 | BUKOWSKI J V , Goble W M . Analysis of pressure relief valve proof test data[J]. Process Safety Progress, 2010, 28: 24-29. |
52 | BUKOWSKI J V . Results of statistical analysis of pressure relief valve proof test data designed to mechanical parts failure database[R]. Sellersville: Exida, 2009. |
53 | SHEESLY J H , VALENZUELA C A . Statistical analysis of safety relief valves by quantal response methods[R]. USA: Air Products and Chemicals Inc., 1993. |
54 | SHEESLY J H , THOMAS H W , ALENZUELA C A . Quantal response analysis of relief valve test data [C]//ASQC 49th Annual Quality Congress Proceedings. Ohio, USA: ASQC, 1995: 741-748. |
55 | BUKOWSKI J V , GOBLE W M . Unexpected results from the analysis of PERD proof test data & the implications for pressure relief valve safety [C]//Proceedings of the 64th Annual Instrumentation Symposium for the Process Industries, Texas,USA: 2009: 39-52. |
56 | 于新海, 涂善东, 轩福贞, 等 . 一种测试安全阀热态机械性能的试验装置及试验方法: CN103852245A[P]. 2016-09-14. |
YU X H , TU S-D , XUAN F Z , et al . A test device for testing the thermal mechanical performance of safety valve:CN103852245A[P]. 2016-09-14. | |
57 | 于新海, 涂善东, 轩福贞, 等 . 一种测试蒸汽安全阀排量的试验装置及试验方法: CN103808503A[P]. 2016-08-24. |
YU X H , TU S-T , XUAN F Z , et al . Test device and test method for testing discharge capacity of steam safety valve: CN 103808503A[P]. 2016-08-24. | |
58 | 涂善东, 徒芸, 齐一华, 等 . 全金属封装的耐高温光纤光栅传感器及其制造方法: WO2014015586A1[P]. 2012-11-21. |
TU S-D , TU Y , QI Y H , et al . All metal encapsulated high temperature fiber grating sensor and its manufacturing method: WO2014015586A1[P]. 2012-11-21. | |
59 | YU X C , ZHANG J , ZHAO S L , et al . An investigation into the effect of gas adsorption on safety valve set pressure variations[J]. Chemical Engineering Science, 2018, 188: 170-178. |
60 | 涂善东 . 高温结构完整性原理[M]. 北京: 科学出版社,2003. |
TU S-D . High temperature structural integrity[M]. Beijing: Science Press, 2003. | |
61 | R5. Assessment procedure for the high temperature response of structures, Procedure R5, Issue 3[S]. Gloucester: Nuclear Electric Ltd., 2014. |
62 | 中华人民共和国工业和信息化部 . 含缺陷高温压力管道和阀门安全评定方法: JB/T12746—2016[S]. 北京: 中国标准出版社,2016. |
Ministry of Industry and Information technology of P .R. China. Safety assessment for in-service pressure vessels containing defects:JB/T 12746—2016[S]. Beijing:Standards Press of China,2016. | |
63 | 陈学东,王冰,杨铁成, 等 . 基于风险的检测(RBI)在中国石化企业的实践及若干问题讨论[J]. 压力容器, 2004, 21(8): 39-45. |
CHEN X D , WANG B , YANG T C , et al . Practice of RBI in Chinese petrochemical enterprises and discussion about its several questions[J]. Pressure Vessel Technology, 2004, 21(8): 39-45. | |
64 | 金承尧,赵建平 . 基于RBI 方法的在役安全阀风险评价技术研究[J]. 南京工业大学学报(自然科学版), 2004, 26(5): 25-29. |
JIN C Y , ZHAO J P . Study on risk assessment technology based on RBI method for in-service relief valves[J]. Journal of Nanjing University of Trchnology (Natural Science Edition) , 2004, 26(5): 25-29. | |
65 | CHEN C H , ChEN C H , CHAO Y J . A strategy for the risk-based inspection of pressure safety valves[J]. Reliability Engineering & System Safety, 2009, 94(4): 810-818. |
66 | 金大仁,周有洸 . 弹簧式安全阀之失效分析与可靠度评估[D].台湾: 国立交通大学, 2002. |
JIN D R , ZHOU Y G . Failure analysis and reliability evaluation of spring safety valve[D]. Taiwan: National University of Communications, 2002. | |
67 | 李智斌 . 基于改进FMECA 方法的弹簧全启式安全阀可靠性分析[D]. 杭州: 浙江工业大学, 2012. |
LI Z B . Reliability analysis of spring full open safety valve based on improved FMECA method [D]. Hangzhou: Zhejiang University of Technology, 2012. | |
68 | 于新海,张健, 吕栋炜, 等 . 一种蒸汽安全阀在线泄漏检测装置: CN106033021A[P]. 2004-05-21. |
YU X H , ZHANG J , LV D W , et al . An on-line leak detection device for steam safety valve: CN106033021A[P]. 2004-05-21. |
[1] | SUN Yuyu, CAI Xinlei, TANG Jihai, HUANG Jingjing, HUANG Yiping, LIU Jie. Optimization and energy-saving of a reactive distillation process for the synthesis of methyl methacrylate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 56-63. |
[2] | XU Chenyang, DU Jian, ZHANG Lei. Chemical reaction evaluation based on graph network [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 205-212. |
[3] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[4] | LIU Xuanlin, WANG Yikai, DAI Suzhou, YIN Yonggao. Analysis and optimization of decomposition reactor based on ammonium carbamate in heat pump [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4522-4530. |
[5] | WANG Chen, BAI Haoliang, KANG Xue. Performance study of high power UV-LED heat dissipation and nano-TiO2 photocatalytic acid red 26 coupling system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4905-4916. |
[6] | WU Zhenghao, ZHOU Tianhang, LAN Xingying, XU Chunming. AI-driven innovative design of chemicals in practice and perspective [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3910-3916. |
[7] | YANG Zhiqiang, ZENG Jijun, MA Yiding, YU Tao, ZHAO Bo, LIU Yingzhe, ZHANG Wei, LYU Jian, LI Xingwen, ZHANG Boya, TANG Nian, LI Li, SUN Dongwei. Research status and future trend of sulfur hexafluoride alternatives [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4093-4107. |
[8] | GUO Jin, ZHANG Geng, CHEN Guohua, ZHU Ming, TAN Yue, LI Wei, XIA Li, HU Kun. Research progress on vehicle liquid hydrogen cylinder design [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4221-4229. |
[9] | LI Lanyu, HUANG Xinye, WANG Xiaonan, QIU Tong. Reflection and prospects on the intelligent transformation of chemical engineering research [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3325-3330. |
[10] | ZHOU Longda, ZHAO Lixin, XU Baorui, ZHANG Shuang, LIU Lin. Advances in electrostatic-cyclonic coupling enhanced multiphase media separation research [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3443-3456. |
[11] | XUE Kai, WANG Shuai, MA Jinpeng, HU Xiaoyang, CHONG Daotong, WANG Jinshi, YAN Junjie. Planning and dispatch of distributed integrated energy systems for industrial parks [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3510-3519. |
[12] | GU Shiya, DONG Yachao, LIU Linlin, ZHANG Lei, ZHUANG Yu, DU Jian. Design and optimization of pipeline system for carbon capture considering intermediate nodes [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2799-2808. |
[13] | LI Xue, WANG Yanjun, WANG Yuchao, TAO Shengyang. Recent advances in bionic surfaces for fog collection [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2486-2503. |
[14] | ZOU Yincai, LI Qingguo, WU Hui, ZHONG Xiaobing, CHEN Xianzhi. Heat transfer simulation and optimization of missile borne phase change heat sink [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1248-1256. |
[15] | SUN Xiao, ZHU Guangtao, PEI Aiguo. Industrialization and research progress of hydrogen liquefier [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1103-1117. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |