[1] 甘德华. 芳烃抽提节能改造方案及效果[J]. 石油石化节能与减排, 2011, 1(9):15-19. GAN Dehua. Energy conservation measures for aromatics extraction unit[J]. Energy Conservation and Emission Reduction in Petroleum and Petrochemical Industry, 2011, 1(9):15-19.
[2] 陶良权, 刘京雷, 夏翔鸣, 等. 不锈钢基高通量换热管多孔层的耐乙酸腐蚀特性[J]. 化工进展, 2017, 36(6):2255-2261. TAO Liangquan, LIU Jinglei, XIA Xiangming, et al. Corrosion resistance properties of stainless steel-based porous layer of high flux exchanging tube in acetic acid solution[J]. Chemical Industry and Engineering Progress, 2017, 36(6):2255-2261.
[3] DEWANGAN A K, KUMAR A, KUMAR R. Pool boiling of iso-butane and quasi azeotropic refrigerant mixture on coated surfaces[J]. Experimental Thermal and Fluid Science, 2017, 85:176-188.
[4] 杨君祺. 高效管在制冷系统中的蒸发传热性能研究[D]. 上海:华东理工大学, 2015. YANG Junqi. The evaporation characteristic of high efficient heat transfer tube in refrigeration system[D]. Shanghai:East China University of Science and Technology, 2015.
[5] NISHIKAWA K, ITO T, TANAKA K. Enhanced heat transfer by nucleate boiling on a sintered metal layer[J]. Heat Transfer-Japanese Research, 1979, 8(2):65-81.
[6] YILMAZ S, WESTWATER J W. Effect of commercial enhanced surfaces on the boiling heat transfer curve[J]. American Society of Mechanical Engineers, Heat Transfer Division, 1981, 18:73-91.
[7] WANG X S, WANG Z B, CHEN Q Z. Research on manufacturing technology and heat transfer characteristics of sintered porous surface tubes[C]//JIANG Z, ZHANG C L. Manufacturing Science and Engineering, PTS 1-5. Switzerland:Advanced Materials Research, 2010:1161-1165.
[8] 郭兆阳, 徐鹏, 王元华, 等. 烧结型多孔表面管外池沸腾传热特性[J]. 化工学报, 2012, 63(12):3798-3804. GUO Zhaoyang, XU Peng, WANG Yuanhua, et al. Pool boiling heat transfer on sintered porous coating tubes[J]. CIESC Journal, 2012, 63(12):3798-3804.
[9] 王宏智, 刘京雷, 戴玉林, 等. 高效换热器用烧结型复合粉末多孔管研究[J]. 华北电力大学学报(自然科学版), 2010, 37(1):33-35. WANG Hongzhi, LIU Jinglei, DAI Yulin, et al. Study on sintered porous coating tubes with composite cowder in high efficiency heat exchangers[J]. Journal of North China Electric Power University, 2010, 37(1):33-35.
[10] JUNG D S, AN K Y, PARK J. Nucleate boiling heat transfer coefficients of HFC22, HFC134a, HFC125, and HFC32 on various enhanced tubes[J]. International Journal of Refrigeration-Revue Internationale Du Froid, 2004, 27(2):202-206.
[11] 孙兆虎, 公茂琼, 李志坚, 等. 多元混合工质池核沸腾传热实验研究[J]. 制冷学报, 2006(1):9-14. SUN Zhaohu, GONG Maoqiong, LI Zhijian, et al. Experiment study of pool boiling heat transfer of multicomponent mixed-refrigerants[J]. Journal of Refrigeration, 2006(1):9-14.
[12] 徐宏, 戴玉林, 夏翔鸣, 等. 高通量换热器研制及在大型石化装置中的节能应用[J]. 太原理工大学学报, 2010, 41(5):577-580. XU Hong, DAI Yulin, XIA Xiangming, et al. Manufacture of high flux heat exchanger and its application in large scale petrochemical equipment[J]. Journal of Taiyuan University of Technology, 2010, 41(5):577-580.
[13] O'Neill P S, GOTTZMANN C F, TERBOT J W. Heat exchanger for NGL[J]. Chemical Engineering Progress, 1971, 67(7):80.
[14] NISHITH B D, SANTANU B. Process integration of organic Rankine cycle[J]. Energy, 2009, 34(10):1674-1686.
[15] GU W, WENG Y W, WANG Y Z, et al. Theoretical and experimental investigation of an organic Rankine cycle for a waste heat recovery system[J]. Journal of Power and Energy, 2009, 223(5):523-533.
[16] SCHUSTER A, KARELLAS S, KAKARAS E, et al. Energetic and economic investigation of organic Rankine cycle applications[J]. Applied Thermal Engineering, 2009, 29(8):1809-1817.
[17] 叶依林. 基于太阳能的有机朗肯循环低温热发电系统的研究[D]. 北京:华北电力大学, 2012. YE Yilin. The study of low-temperature power generation based on solar organic rankine cycle[D]. Beijing:North China Electric Power University, 2012.
[18] FREDY V. Selecting working fluids in an organic Rankine cycle for power generation from low temperature heat sources[J]. Universidad Nacional De Colombia, 2014, 81(188):173-180.
[19] 王大彪, 段捷, 胡哺松, 等. 有机朗肯循环发电技术发展现状[J]. 节能技术, 2015, 33(3):235-242. WANG Dabiao, DUAN Jie, HU Busong, et al. Status of organic rankine cycle power generation technology[J]. Energy Conservation Technology, 2015, 33(3):235-242.
[20] SALEH B, KOGLBAUER G, WENDLAND M, et al. Working fluids for low-temperature organic Rankine cycles[J]. Energy, 2007, 7(32):1210-1221.
[21] PAPADOPOULOS AI, STIJEPOVIC M, LINKE P. On the systematic design and selection of optimal working fluids for organic Rankine cycles[J]. Applied Thermal Engineering, 2010, 6(30):760-769.
[22] ZHU K, ZHANG M, WANG Y B, et al. Parametric optimization of low temperature ORC system[J]. Energy Procedia, 2015, 75:1596-1602.
[23] 李虎, 张于峰, 李鑫钢, 等. 低温发电系统在精馏工艺中的节能技术[J]. 化工进展, 2013, 32(5):1187-1193. LI Hu, ZHANG Yufeng, LI Xingang, et al. Energy-saving technology research of low-temperature cogeneration system in rectifying process[J]. Chemical Industry and Engineering Process, 2013, 32(5):1187-1193.
[24] KASKA O. Energy and exergy analysis of an organic Rankine for power generation from waste heat recovery in steel industry[J]. Energy Conversion and Management, 2014, 77:108-117.
[25] 姚玉婷, 李士雨. 芳烃装置中二甲苯塔顶冷凝热用于有机朗肯循环低温热发电[J]. 石油化工, 2018, 47(4):356-361. YAO Yuting, LI Shiyu. Use of overhead condensation heat of xylene column in aromatic plant for organic Rankine cycle low-temperature cogeneration[J]. Petrochemical Technology, 2018, 47(4):356-361.
[26] TCHANCHE B F, PAPADAKIS G, LAMBRINOS G, et al. Fluid selection for a low-temperature solar organic rankine cycle[J]. Applied Thermal Engineering, 2009, 29(11/12):2468-2476.
[27] 王建永, 王江峰, 王红阳, 等. 有机朗肯循环地热发电系统工质选择[J]. 工程热物理学报, 2017, 38(1):11-17. WANG Jianyong, WANG Jiangfeng, WANG Hongyang, et al. Selection of working fluid for organic Rankine cycle used in geothermal power plant[J]. Journal of Engineering Thermophysics, 2017, 38(1):11-17.
[28] 俞佳, 陆友俊, 张冠文, 等. 高通量换热管与烧结型高通量换热管性能介绍[J]. 中国冶金, 2017, 27(8):50-55. YU Jia, LU Youjun, ZHANG Guanwen, et al. Introduction of high flux heat exchange tube and performance of sintered high flux heat exchange tube[J]. China Metallurgy, 2017, 27(8):50-55. |