Chemical Industry and Engineering Progress ›› 2018, Vol. 37 ›› Issue (09): 3346-3354.DOI: 10.16085/j.issn.1000-6613.2017-2282
Previous Articles Next Articles
LIU Yueling, JING Qi, XU Fan, LI Huan
Received:
2017-11-03
Revised:
2017-12-11
Online:
2018-09-05
Published:
2018-09-05
刘跃岭, 景琦, 徐帆, 李欢
通讯作者:
李欢,副教授,主要研究方向高固体厌氧消化和生物质燃料电池。
作者简介:
刘跃岭(1990-),男,硕士研究生。E-mail:thu_liuyl@qq.com。
基金资助:
CLC Number:
LIU Yueling, JING Qi, XU Fan, LI Huan. Research progress of chemical fuel cells by direct use of biomass[J]. Chemical Industry and Engineering Progress, 2018, 37(09): 3346-3354.
刘跃岭, 景琦, 徐帆, 李欢. 直接利用生物质的化学燃料电池研究进展[J]. 化工进展, 2018, 37(09): 3346-3354.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2017-2282
[1] LIU H, LOGAN B E. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane[J]. Environmental Science and Technology, 2004, 38(14):4040-4046. [2] HEIDEBRECHT P, SUNDMACHER K. Molten carbonate fuel cell (MCFC) with internal reforming:model-based analysis of cell dynamics[J]. Chemical Engineering Science, 2003, 58(3/4/5/6):1029-1036. [3] STAMBOULI AB, TTAVERSA E. Solid oxide fuel cells (SOFCs):a review of an environmentally clean and efficient source of energy[J]. Renewable and Sustainable Energy Reviews, 2002, 6(5):433-455. [4] SAMMES N, BOVE R, STAHL K. Phosphoric acid fuel cells:fundamentals and applications[J]. Current Opinion in Solid State and Materials Science, 2004, 8(5):372-378. [5] 冯梦南.生物质燃料电池的研制[D]. 天津:天津大学, 2012. FENG Mengnan. Construction of biomass fuel cell[D]. Tianjin:Tianjin University, 2012. [6] 刘海音, 魏家巍, 辛树全, 等.嵌段型碱性燃料电池用阴离子交换膜的制备与表征[J]. 长春师范大学学报, 2017, 36(4):47-49. LIU Haiyin, WEI Jiawei, XIN Shuquan, et al. Preparation and characterization of block anion exchange membrane for alkaline fuel cell[J].Journal of Changchun Normal University, 2017, 36(4):47-49. [7] FUJIWARA N, YAMAZAKI S, SIROMA Z, et al. Nonenzymatic glucose fuel cells with an anion exchange membrane as an electrolyte[J]. Electrochemistry Communications, 2009, 11(2):390-392. [8] AN L, ZHAO T S, SHEN S Y, et al. Alkaline direct oxidation fuel cell with non-platinum catalysts capable of converting glucose to electricity at high power output[J]. Journal of Power Sources, 2011, 196(1):186-190. [9] CHEN J, ZHENG H, KANG J, et al. An alkaline direct oxidation glucose fuel cell using three-dimensional structural Au/Ni-foam as catalytic electrodes[J]. RSC Advances, 2017, 7(5):3035-3042. [10] SUGANO Y, VESTERGAAED M, YOSHIKAWA H, et al. Direct electrochemical oxidation of cellulose:a cellulose-based fuel cell system[J]. Electroanalysis, 2010, 22(15):1688-1694. [11] LIU S, LIU X, WANG Y, et al. Electricity generation from macroalgae Enteromorpha prolifera hydrolysates using an alkaline fuel cell[J]. Bioresource Technology, 2016, 222:226-231. [12] BASU D, BASU S. Synthesis, characterization and application of platinum based bi-metallic catalysts for direct glucose alkaline fuel cell[J]. Electrochimica Acta, 2011, 56(17):6106-6113. [13] 冯梦南, 刘宪华.一种直接葡萄糖-空气碱性燃料电池的构建和表征[J].电源技术, 2012, 36(9):1291-1294. FENG Mengnan, LIU Xianhua. Construction and characterization of a direct glucose-air alkaline fuel cell[J]. Chinese Journal of Power Sources, 2012, 36(9):1291-1294. [14] LI L, SCOTT K, YU E H. A direct glucose alkaline fuel cell using MnO2-carbon nanocomposite supported gold catalyst for anode glucose oxidation[J]. Journal of Power Sources, 2013, 221:1-5. [15] CHEN J, ZHAO C X, ZHI M M, et al. Alkaline direct oxidation glucose fuel cell system using silver/nickel foams as electrodes[J]. Electrochimica Acta, 2012, 66:133-138. [16] 宋秉烨, 李印实, 杨卫卫, 等.自呼吸式碱性直接葡萄糖燃料电池研究[J].工程热物理学报, 2015, 36(3):568-571. SONG Bingye, LI Yinshi, YANG Weiwei, et al. Performance characterization of air-breathing anion-exchange membrane direct glucose fuel cells[J]. Journal of Engineering Thermophysics, 2015, 36(3):568-571. [17] FATIH K, WILKINSON DP, MORAW F, et al. Advancements in the direct hydrogen redox fuel cell[J]. Electrochemical and Solid State Letters, 2008, 11(2):B11-B15. [18] ILLICIC A, WILKINSON D P, FATIH K, et al. High fuel concentration direct liquid fuel cell with redox couple cathode[J]. ECS Transactions, 2008, 155(12):B1322-B1327. [19] LIU W, MU W, LIU M, et al. Solar-induced direct biomassto-electricity hybrid fuel cell using polyoxometalates as photocatalyst and charge carrier[J]. Nature Communications, 2014, 5:3208. [20] LIU W, MU W, DENG Y. High-performance liquid-catalyst fuel cell for direct biomass-into-electricity conversion[J]. Angewandte Chemie:International Edition, 2014, 53(49):13558-13562. [21] GONG J, LIU W, DU X, et al. Direct conversion of wheat straw into electricity with a biomass flow fuel cell mediated by two redox ion pairs[J]. ChemSusChem, 2017, 10(3):506-513. [22] 徐帆.利用有机废弃物产电的液相催化燃料电池系统[D].北京:清华大学, 2017. XU Fan. Liquid-catalyst fuel cell using biomass waste as fuel[D]. Beijing:Tsinghua University, 2017. [23] 孙世刚, 陈胜利.电催化[M].北京:化学工业出版社, 2013. SUN Shigang, CHEN Shengli. Electrocatalysis[M]. Beijing:Chemical Industry Press, 2013. [24] 陆天虹. 能源电化学[M]. 北京:化学工业出版社, 2014. LU Tianhong. Electrochemical energy[M]. Beijing:Chemical Industry Press, 2014. [25] YU E H, WANG X, KREWER U, et al. Direct oxidation alkaline fuel cells:from materials to systems[J]. Energy & Environmental Science, 2012, 5(2):5668-5680. [26] WU W, LIU W, MU W, et al. Polyoxymetalate liquid-catalyzed polyol fuel cell and the related photoelectrochemical reaction mechanism study[J]. Journal of Power Sources, 2016, 318:86-92. [27] XU C, TIAN Z, SHEN P, et al. Oxide (CeO2, NiO, Co3O4, and Mn3O4)-promoted Pd/C electrocatalysts for alcohol electrooxidation in alkaline media[J]. Electrochimica Acta, 2008, 53(5):2610-2618. [28] SHIMIZU K, FURUKAWA H, KOBAYASHI N, et al. Effects of Bronsted and Lewis acidities on activity and selectivity of heteropolyacid-based catalysts for hydrolysis of cellobiose and cellulose[J]. Green Chemistry, 2009, 11(10):1627-1632. [29] DING Y, DU B, ZHAO X, et al. Phosphomolybdic acid and ferric iron as efficient electron mediators for coupling biomass pretreatment to produce bioethanol and electricity generation from wheat straw[J]. Bioresource Technology, 2017, 228:279. [30] ZHANG Z, LIU J, GU J, et al. An overview of metal oxide materials as electrocatalysts and supports for polymer electrolyte fuel cells[J]. Energy & Environmental Science, 2014, 7(8):2535-2558. [31] SHEN P K, XU C. Alcohol oxidation on nanocrystalline oxide Pd/C promoted electrocatalysts[J]. Electrochemistry Communications, 2006, 8(1):184-188. [32] MA J, SAHAI Y, BUCHHEIT R G. Direct borohydride fuel cell using Ni-based composite anodes[J]. Journal of Power Sources, 2010, 195(15):4709-4713. [33] HAO M, LIU X, FENG M, et al. Generating power from cellulose in an alkaline fuel cell enhanced by methyl viologen as an electrontransfer catalyst[J]. Journal of Power Sources, 2014, 251(2):222-228. [34] HORIGOME M, KOBAYASHI K, SUZUKI T M. Impregnation of metal carbides in Raney Ni-PTFE hydrogen electrodes[J]. International Journal of Hydrogen Energy, 2007, 32(3):365-370. [35] MARTINEZ-HUERTA M V, ROJAS S, FUENTE J L G D L, et al. Effect of Ni addition over PtRu/C based electrocatalysts for fuel cell applications[J]. Applied Catalysis B:Environmental, 2006, 69(1):75-84. [36] YAN W, WANG D, BOTTE G G. Electrochemical decomposition of urea with Ni-based catalysts[J]. Applied Catalysis B:Environmental, 2012, 127(3):221-226. [37] HAMMOUCHE A, KAHOUL A, SAUER D U, et al. Influential factors on oxygen reduction at La1-xCaxCoO3 electrodes in alkaline electrolyte[J]. Journal of Power Sources, 2006, 153(2):239-244. [38] RAGHUVEER V, VISWANATHAN B. Can La2-xSrxCuO4, be used as anodes for direct methanol fuel cells?[J]. Fuel, 2002, 81(17):2191-2197. [39] YU H C, FUNG K Z, GUO T C, et al. Syntheses of perovskite oxides nanoparticles La1-xSrxMO3-δ (M=Co and Cu) as anode electrocatalyst for direct methanol fuel cell[J]. Electrochimica Acta, 2004, 50(2/3):811-816. [40] SINGH R N, SHARMA T, SINGH A, et al. Perovskite-type LaxSr1-xNiO (0 ≤ x ≤ 1) as active anode materials for methanol oxidation in alkaline solutions[J]. Electrochimica Acta, 2008, 53(5):2322-2330. [41] ZHAO Q, YAN Z, CHEN C, et al. Spinels:controlled preparation, oxygen reduction/evolution reaction application, and beyond[J]. Chemical Reviews, 2017, 15:10121-10211. [42] XUE F, XIAO J, YANG S, et al. Investigation on microwave absorbing properties of loaded MnFe2O4 and degradation of Reactive Brilliant Red X-3B[J]. Applied Catalysis B:Environmental, 2015, 162:544-550. [43] FENG J, SU L, MA Y, et al. CuFe2O4, magnetic nanoparticles:a simple and efficient catalyst for the reduction of nitrophenol[J]. Chemical Engineering Journal, 2013, 221(4):16-24. [44] GOYAL A, BANSAL S, KUMAR V, et al. Mn substituted cobalt ferrites (CoMnxFe2-xO4, (x=0.0,0.2,0.4,0.6,0.8,1.0)):as magnetically separable heterogeneous nanocatalyst for the reduction of nitrophenols[J]. Applied Surface Science, 2015, 324(5):877-889. [45] ZHANG Y, LUO L, ZHANG Z, et al. Synthesis of MnCo2O4 nanofibers by electrospinning and calcination:application for a highly sensitive non-enzymatic glucose sensor[J]. Journal of Materials Chemistry B, 2014, 2(5):529-535. [46] HIDESHI Hattori, YOSHIO Ono. 固体酸催化[M]. 上海:复旦大学出版社, 2016. HIDESHI Hattori, YOSHIO Ono. Solid acid catalysis[M]. Shanghai:Fudan University Press, 2016. [47] 王秀丽, 赵岷.多酸电化学导论[M].北京:中国环境科学出版社, 2006. WANG Xiuli, ZHAO Min. Introduction of polyacid electrochemistry[M]. Beijing:China Environmental Science Press. 2006. [48] 陈维林, 王恩波.多酸化学[M].北京:科学出版社, 2016. CHEN Weilin, WANG Enbo. Polyacid chemistry[M]. Beijing:Science Press, 2016. [49] ZHANG Z, LIU C, LIU W, et al. Direct conversion of sewage sludge to electricity using polyoxomatelate catalyzed flow fuel cell[J]. Energy, 2017, 141:1019-1026. [50] ZHAO X, ZHU JY. Efficient conversion of lignin to electricity using a novel direct biomass fuel cell mediated by polyoxometalates at low temperatures[J]. ChemSusChem, 2016, 9(2):197. [51] RAFIEE E, EAVANI S. Heterogenization of heteropoly compounds:a review of their structure and synthesis[J]. RSC Advances, 2016, 6(52):46433-46466. [52] JI Yuanchun, HUANG Lujiang, HU Jun. Polyoxometalatefunctionalized nanocarbon materials for energy conversion, energy storage, and sensor systems[J]. Energy Environ. Sci., 2015, 8:776-789. [53] LIN C G, HU J, SONG Y F. Polyoxometalate-functionalized nanocarbon materials for energy conversion, energy storage, and sensor systems[J]. Advances in Inorganic Chemistry, 2017, 69:181-212. [54] JAOUEN F, PROIETTI E, LEFEVRE M, et al. Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells[J]. Energy & Environmental Science, 2010, 4(1):114-130. [55] OTHMAN R, DICKS A L, ZHU Z. Non precious metal catalysts for the PEM fuel cell cathode[J]. International Journal of Hydrogen Energy, 2011, 37(1):357-372. [56] WU G, ZELENAY P. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt[J]. Science, 2011, 332(6028):443. [57] SHEN P K, XIE F Y, MENG H. Preparation and characterization of tungsten carbides as alkaline fuel cell catalysts[J]. ECS Transactions, 2006, 1(32):22-30. [58] HORIGOME M, KOBAYASHI K, SUZUKI T M. Impregnation of metal carbides in Raney Ni-PTFE hydrogen electrodes[J]. International Journal of Hydrogen Energy, 2007, 32(3):365-370. [59] RYCHCIK M, SKYLLAS-KAZACOS M. Evaluation of electrode materials for vanadium redox cell[J]. Journal of Power Sources, 1987, 19(1):45-54. [60] ZHONG S, PADESTE C, KAZACOS M, et al. Comparison of the physical, chemical and electrochemical properties of rayon-and polyacrylonitrile-based graphite felt electrodes[J]. Journal of Power Sources, 1993, 45(1):29-41. [61] SUN B, SKYLLAS-KAZACOS M. Modification of graphite electrode materials for vanadium redox flow battery application——Ⅰ. Thermal treatment[J]. Electrochimica Acta, 1992, 37(7):1253-1260. [62] SUN B, SKYLLAS-KAZACOS M. ChemInform abstract:chemical modification of graphite electrode materials for vanadium redox flow battery application. Part 2. Acid treatments[J]. Cheminform, 1992, 23(49):18-18. [63] 刘素琴, 郭小义, 黄可龙, 等.钒电池电极材料聚丙烯腈石墨毡的研究[J].电池, 2005, 35(3):183-184. LIU S Q, GUO X Y, HUANG K L, et al. Studies on the electrode material PAN-graphite felt used in vanadium battery[J].Battery, 2005, 35(3):183-184. [64] 钱鹏, 张华民, 陈剑, 等.全钒液流电池用电极及双极板研究进展[J].能源工程, 2007(1):7-11. QIAN Peng, ZHANG Huamin, CHEN Jian, et al. Progress on electrode and bipolar plate materials for vanadium redox flow batteries[J]. Energy Engineering, 2007(1):7-11. [65] WIND J, SPÄH R, KAISER W, et al. Metallic bipolar plates for PEM fuel cells[J]. Journal of Power Sources, 2002, 105(2):256-260. [66] WILSON M S, BUSICK D N. Composite bipolar plate for electrochemical cells:US 6248467 B1[P]. 2001-06-19. [67] 邹彦文, 张杰, 贺俊, 等.质子交换膜燃料电池复合材料双极板的研究[J]. 新型炭材料, 2004, 19(4):303-308. ZOU Yanwen, ZHANG Jie, HE Jun, et al. Proton exchange membrane fuel cell composite bipolar plate[J]. New Carbon Materials, 2004, 19(4):303-308. [68] 毛宗强.燃料电池[M].北京:化学工业出版社, 2005. MAO Zongqiang. Fuel cell[M]. Beijing:Chemical Industry Press, 2005. [69] KIM H, KANG M S, DONG H L, et al. Proton exchange membranes with high cell performance based on Nafion/poly(p-phenylene vinylene) composite polymer electrolyte[J]. Journal of Membrane Science, 2007, 304(1):60-64. [70] TANG H, PAN M, LU S, et al. One-step synthesized HPW/meso-silica inorganic proton exchange membranes for fuel cells[J]. Chemical Communications, 2010, 46(24):4351-4353. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | XU Jiaheng, LI Yongsheng, LUO Chunhuan, SU Qingquan. Optimization of methanol steam reforming process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 41-46. |
[6] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[7] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[8] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[9] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[10] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[11] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[12] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[13] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[14] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[15] | XIANG Yang, HUANG Xun, WEI Zidong. Recent progresses in the activity and selectivity improvement of electrocatalytic organic synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4005-4014. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |