[1] ARMAND M B. Intercalation electrodes[M]//Materials for advanced batteries. US:Springer, 1980:145-161.
[2] FANG Y, CHEN Z, AI X, et al. Recent developments in cathode materials for Na ion batteries[J]. Acta Physico-Chimica Sinica, 2017, 33(1):211-241.
[3] TANG Y, ZHAO Z, WANG Y, et al. Ultrasmall MoS2 nanosheets mosaiced into nitrogen-doped hierarchical porous carbon matrix for enhanced sodium storage performance[J]. Electrochimica Acta, 2016, 225:369-377.
[4] ZHAO C, YU C, ZHANG M, et al. Enhanced sodium storage capability enabled by super wide-interlayer-spacing MoS2 integrated on carbon fibers[J]. Nano Energy, 2017, 41:66-74.
[5] PALOMARES V, SERRAS P, VILLALUENGA I, et al. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems[J]. Energy & Environmental Science, 2012, 5(3):5884-5901.
[6] DELMAS C, SAADOUNE I. Electrochemical and physical properties of the LixNi1-yCoyO2, phases[J]. Solid State Ionics, 1992, 53-56(3):370-375.
[7] SATHIYAMOORTHI R, MANISANKAR P, SHAKKTHIVEL P, et al. Synthesis, characterization and electrochemical studies of LiNi0.8Mn0.2O2 cathode material for rechargeable lithium batteries[J]. Bulletin of Materials Science, 2008, 31(3):441-447.
[8] LI L, LI X, WANG Z, et al. Stable cycle-life properties of Ti-doped LiFePO4 compounds synthesized by co-precipitation and normal temperature reduction method[J]. Journal of Physics & Chemistry of Solids, 2009, 70(1):238-242.
[9] YANG L, XIONG H, ZHANG X, et al. Direct electrochemistry of glucose oxidase and biosensing for glucose based on boron-doped carbon-coated nickel modified electrode[J]. Biosensors & Bioelectronics, 2011, 26(9):3801-3803.
[10] ZHU L, LIU Y, WU W, et al. Surface fluorinated LiNi0.8Co0.15Al0.05O2 as a positive electrode material for lithium ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(29):15156-15162.
[11] ARICO A S, BRUCE P, SCROSATI B, et al. Nanostructured materials for advanced energy conversion and storage devices[J]. Nature Materials, 2005, 4(5):366-377.
[12] TAKEDA Y, AKAGI J, EDAGAWA A. A preparation and polymorphic relations of sodium iron oxide (NaFeO2)[J]. Materials Research Bulletin, 1980, 15(8):1167-1172.
[13] LEE D H, XU J, MENG Y S. An advanced cathode for Na-ion batteries with high rate and excellent structural stability[J]. Physical Chemistry Chemical Physics, 2013, 15(9):3304-3312.
[14] UEBOU Y, KIYABU T, OKADA S, et al. Electrochemical sodium insertion into the 3D-framework of Na3M2(PO4)3(M=Fe, V)[J]. Reports of Institute of Advanced Material Study Kyushu University, 2002, 16:1-5
[15] ZHAO R, ZHU L, CAO Y, et al. An aniline-nitroaniline copolymer as a high capacity cathode for Na-ion batteries[J]. Electrochemistry Communications, 2012, 21(1):36-38.
[16] SONG J, WANG L, LU Y, et al. Removal of interstitial H2O in hexacyanometallates for a superior cathode of a sodium-ion battery[J]. Journal of the American Chemical Society, 2015, 137(7):2658-2660.
[17] MU L, QI X, HU Y, et al. Electrochemical properties of novel O3-NaCu1/9Ni2/9Fe1/3Mn1/3O2 as cathode material for sodium ion batteries[J]. Energy Storage and Technology, 2016, 5(3):324-328.
[18] VASSILARAS P E, MA X, LI X, et al. Electrochemical properties of monoclinic NaNiO2[J]. Journal of the Electrochemical Society, 2012, 160(2):A207-A211.
[19] WU D, LI X, XU B, et al. NaTiO2:a layered anode material for sodium-ion batteries[J]. Energy & Environmental Science, 2014, 8(1):195-202.
[20] YANAGITA A, SHIBATA T, KOBAYASHI W, et al. Scaling relation between renormalized discharge rate and capacity in NaxCoO2 films[J]. Apllied Materials, 2015, 3(10):710-712.
[21] MA X, CHEN H, CEDER G. Electrochemical properties of monoclinic NaMnO2[J]. Journal of the Electrochemical Society, 2011, 158(2):A1307-1309.
[22] YU C Y, PARK J S, JUNG H G, et al. NaCrO2 cathode for high rate sodium-ion batteries[J]. Energy & Environmental Science, 2015, 8(7):2019-2026.
[23] YABUUCHI N, YOSHIDA H, KOMABA S. Crystal structures and electrode performance of alpha-NaFeO2 for rechargeable sodium batteries[J]. Electrochemistry Tokyo, 2012, 80(10):716-719.
[24] GUIGNARD M, DIDIER C, DARRIET J, et al. P2-NaxVO2 system as electrodes for batteries and electron-correlated materials[J]. Nature Materials, 2013, 12(1):74-80
[25] CARLIER D, BLANGERO M, MENETRIER M, et al. Sodium ion mobility in NaxCoO2(0.60.75) cobaltites studied by Na MAS NMR[J]. Inorganic Chemistry, 2009, 48(15):7018-7021.
[26] XIA X, DAHN J R. NaCrO2 is a fundamentally safe positive electrode material for sodium-ion batteries with liquid electrolytes[J]. Electrochemical and Solid-State Letters, 2012, 15(1):A1-3.
[27] TEKIN B, SEVINC S, MORCRETTE M, et al. A new sodium based aqueous rechargeable battery system:the special case for Na0.44MnO2/dissolved sodium polysulfide[J]. Energy Technology, 2017, 5(12):1-5.
[28] YUE J L, ZHOU Y N, YU X Q, et al. O3-type layered transition metal oxide Na(NiCoFeTi)1/4O2 as a high rate and long cycle life cathode material for sodium ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(46):23261-23267.
[29] GUO H, WANG Y, HAN W, et al. Na-deficient O3-type cathode material Na0.8[Ni0.3Co0.2Ti0.5] O2 for room-temperature sodium-ion batteries[J]. Electrochimica Acta, 2015, 158:258-263.
[30] CAO M H, WANG Y, SHADIKE Z, et al. Suppressing the chromium disproportionation reaction in O3-type layered cathode materials for high capacity sodium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(11):133-138.
[31] YAO H R, WANG P F, WANG Y, et al. Excellent comprehensive performance of Na-based layered oxide benefiting from the synergetic contributions of multimetal ions[J]. Advanced Energy Materials, 2017, 7(15):1700189.
[32] MANIKANDAN P, RAMASUBRAMONIAN D, SHAIJUMON M M. Layered P2-type Na0.5Ni0.25Mn0.75O2 as a high performance cathode material for sodium-ion batteries[J]. Electrochimica Acta, 2016, 206:199-206.
[33] ZHANG X H, PANG W L, WAN F, et al. P2-Na2/3Ni1/3Mn5/9Al1/9O2 microparticles as superior cathode material for sodium-ion batteries:ehanced properties and mechanism via graphene connection[J]. ACS Applied Materials & Interfaces, 2016, 8(32):20650-20653.
[34] GUO S, LIU P, YU H, et al. A layered P2-and O3-type composite as a high-energy cathode for rechargeable sodium-ion batteries[J]. Angewandte Chemie, 2015:127:5992-5997.
[35] GOODENOUGH J B, HONG Y P, KAFALAS J A. Fast Na+-ion transport in skeleton structures[J]. Materials Research Bulletin, 1976, 11(2):203-220.
[36] BARPANDA P, YE T, NISHIMURA S I, et al. Sodium iron pyrophosphate:a novel 3.0V iron-based cathode for sodium-ion batteries[J]. Electrochemistry Communications, 2012, 24(10):116-119.
[37] HE G, HUQ A, KAN W H, et al. β-NaVOPO4 obtained by a low-temperature synthesis process:a new 3.3V cathode for sodium-ion batteries[J]. Chemistry of Materials, 2016, 28(5). DOI:10.1021/acs.chemmater.5b04992.
[38] BOYADZHIEVA T, KOLEVA V, ZHECHEVA E, et al. Competitive lithium and sodium intercalation into sodium manganese phospho-olivine NaMnPO4 covered with carbon black[J]. RSC Advances, 2015, 5(106):87694-87705.
[39] HONMA T, TOGASHI T, ITO N, et al. Fabrication of Na2FeP2O7 glass-ceramics for sodium ion battery[J]. Journal-Ceramic Society Japan, 2012, 120(1404):344-346.
[40] GOPALAKRISHNAN J, RANGAN K K. V2(PO4)3:a novel NASICON-type vanadium phosphate synthesized by oxidative deintercalation of sodium from Na3V2(PO4)3[J]. Cheminform, 1992, 23(44):745-747.
[41] SONG W, JI X, WU Z, et al. Exploration of ion migration mechanism and diffusion capability for Na3V2(PO4)2F3, cathode utilized in rechargeable sodium-ion batteries[J]. Journal of Power Sources, 2014, 256(12):258-263.
[42] SANZ F, PARADA C, ROJO J M, et al. Synthesis, structural characterization, magnetic properties, and ionic conductivity of Na4MⅡ3(PO4)2(P2O7) (MⅡ=Mn, Co, Ni)[J]. Chem. Mater., 2001, 13(4):1334-1340.
[43] DENG C, ZHANG S. 1D nanostructured Na7V4(P2O7)4(PO4) as high-potential and superior-performance cathode material for sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2014, 6(12):9111-9117.
[44] ZHOU M, XIONG Y, CAO Y, et al. Electroactive organic anion-doped polypyrrole as a low cost and renewable cathode for sodium-ion batteries[J]. Journal of Polymer Science Part B:Polymer Physics, 2013, 51(2):114-118.
[45] KITAJOU A, KOMATSU H, CHIHARA K, et al. Novel synthesis and electrochemical properties of perovskite-type NaFeF3 for a sodium-ion battery[J]. Journal of Power Sources, 2012, 198:389-392.
[46] CHEN X, WU Y, HUANG Z, et al. C10H4O2S2/graphene composite as a cathode material for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2016, 4(47):12-15.
[47] DIMOV N, NISHIMURA A, CHIHARA K, et al. Transition metal NaMF3 compounds as model systems for studying the feasibility of ternary Li-M-F and Na-M-F single phases as cathodes for lithium-ion and sodium-ion batteries[J]. Electrochimica Acta, 2013, 110(6):214-220.
[48] LIU Y, HE D, HAN R, et al. Nanostructured potassium and sodium ion incorporated Prussian blue frameworks as cathode materials for sodium-ion batteries[J]. Chemical Communications, 2017, 53(40):5569-5571.
[49] ZHANG E, WANG B, YU X, et al. β-FeOOH on carbon nanotubes as a cathode material for Na-ion batteries[J]. Energy Storage Materials, 2017, 8:147-152. |