Chemical Industry and Engineering Progress ›› 2018, Vol. 37 ›› Issue (06): 2269-2281.DOI: 10.16085/j.issn.1000-6613.2017-1334
Previous Articles Next Articles
WANG Linlin, ZHANG Zhiming, DING Aqiang, CHENG Ran, ZHANG Mingjie, WU Donglei
Received:2017-07-03
Revised:2018-02-20
Online:2018-06-05
Published:2018-06-05
王琳琳, 张智明, 丁阿强, 程然, 张铭杰, 吴东雷
通讯作者:
吴东雷,副研究员,硕士生导师,研究方向为水污染控制工程。
作者简介:王琳琳(1992-),女,硕士研究生,研究方向为水污染控制工程。E-mail:wang154834084@zju.edu.cn。
基金资助:CLC Number:
WANG Linlin, ZHANG Zhiming, DING Aqiang, CHENG Ran, ZHANG Mingjie, WU Donglei. Modification of zeolite materials and their adsorption properties for the pollutants in aqueous solution[J]. Chemical Industry and Engineering Progress, 2018, 37(06): 2269-2281.
王琳琳, 张智明, 丁阿强, 程然, 张铭杰, 吴东雷. 沸石材料的改性及其对水体污染物的吸附性能[J]. 化工进展, 2018, 37(06): 2269-2281.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2017-1334
| [1] KURNIAWAN T A, CHAN G Y S, LO W, et al. Physico-chemical treatment techniques for wastewater laden with heavy metals[J]. Chemical Engineering Journal, 2006, 118(1/2):83-98. [2] BOUJELBEN N, BOUZID J, ELOUEAR Z, et al. Phosphorus removal from aqueous solution using iron coated natural and engineered sorbents[J]. Journal of Hazardous Materials, 2008, 151(1):103-110. [3] CONLEY D J, PAERL H W, HOWARTH R W, et al. Controlling eutrophication:nitrogen and phosphorus[J]. Science, 2009, 323(5917):1014-1015. [4] BOND T, GOSLAN E H, PARSONS S A, et al. Disinfection by-product formation of natural organic matter surrogates and treatment by coagulation, MIEX(R) and nanofiltration[J]. Water Research, 2010, 44(5):1645-1653. [5] ZHAO W H, ZHANG Y, LV P M, et al. Advanced nitrogen and phosphorus removal in the pre-denitrification anaerobic/anoxic/aerobic nitrification sequence batch reactor (pre-A2NSBR) treating low carbon/nitrogen (C/N) wastewater[J]. Chemical Engineering Journal, 2016, 302:296-304. [6] JI Q Q, LI J, XIONG Z K, et al. Enhanced reactivity of microscale Fe/Cu bimetallic particles (mFe/Cu) with persulfate(PS) for p-nitrophenol (PNP) removal in aqueous solution[J]. Chemosphere, 2017, 172:10-20. [7] MENKOUCHI SAHLI M A, ANNOUAR S, MOUNTADAR M, et al. Nitrate removal of brackish underground water by chemical adsorption and by electrodialysis[J]. Desalination, 2008, 227(1/2/3):327-333. [8] LUO W H, PHAN H V, XIE M H, et al. Osmotic versus conventional membrane bioreactors integrated with reverse osmosis for water reuse:biological stability, membrane fouling and contaminant removal[J]. Water Research, 2017, 109:122-134. [9] SCHICK J, CAULLET P, PAILLAUD J, et al. Batch-wise nitrate removal from water on a surfactant-modified zeolite[J]. Microporous and Mesoporous Materials, 2010, 132(3):395-400. [10] BHATNAGAR A, CHOI Y, YOON Y, et al. Bromate removal from water by granular ferric hydroxide(GFH)[J]. Journal of Hazardous Materials, 2009, 170(1):134-140. [11] SCHICK J, CAULLET P, PAILLAUD J, et al. Nitrate sorption from water on a surfactant-modified zeolite. Fixed-bed column experiments[J]. Microporous and Mesoporous Materials, 2011, 142(2/3):549-556. [12] SOWMYA A, MEENAKSHI S. Zr(Ⅳ)loaded cross-linked chitosan beads with enhanced surface area for the removal of nitrate and phosphate[J]. International Journal of Biological Macromolecules, 2014, 69:336-343. [13] BHATNAGAR A,HOGLAND W,MARQUES M,et al.An overview of the modification methods of activated carbon for its water treatment applications[J]. Chemical Engineering Journal, 2013, 219:499-511. [14] LI J F, LI Y M, MENG Q L. Removal of nitrate by zero-valent iron and pillared bentonite[J]. Journal of Hazardous Materials, 2010, 174(1/2/3):188-193. [15] ZHAN Y H, LIN J W, ZHU Z L. Removal of nitrate from aqueous solution using cetylpyridinium bromide(CPB) modified zeolite as adsorbent[J]. Journal of Hazardous Materials, 2011, 186(2/3):1972-1978. [16] GUAN H D, BESTLAND E, ZHU C Y, et al. Variation in performance of surfactant loading and resulting nitrate removal among four selected natural zeolites[J]. Journal of Hazardous Materials, 2010, 183(1/2/3):616-621. [17] DAYANANDA D, SARVA V R, PRASAD S V, et al. Preparation of CaO loaded mesoporous Al2O3:efficient adsorbent for fluoride removal from water[J]. Chemical Engineering Journal, 2014, 248:430-439. [18] BAO M L, GRIFFINI O, SANTIANNI D, et al. Removal of bromate ion from water using granular activated carbon[J]. Water Research, 1999, 33(13):2959-2970. [19] WANG L L, HAN C, NADAGOUDA M N, et al. An innovative zinc oxide-coated zeolite adsorbent for removal of humic acid[J]. Journal of Hazardous Materials, 2016, 313:283-290. [20] LIU S, LIM M, AMAL R. TiO2-coated natural zeolite:rapid humic acid adsorption and effective photocatalytic regeneration[J]. Chemical Engineering Science, 2014, 105:46-52. [21] CHEN H, LUO H J, LAN Y C, et al. Removal of tetracycline from aqueous solutions using polyvinylpyrrolidone(PVP-K30) modified nanoscale zero valent iron[J]. Journal of Hazardous Materials, 2011, 192:44-53. [22] SOWMYA A, MEENAKSHI S. A novel quaternized resin with acrylonitrile/divinylbenzene/vinylbenzyl chloride skeleton for the removal of nitrate and phosphate[J]. Chemical Engineering Journal, 2014, 257:45-55. [23] KYZAS G Z, LAZARIDIS N K, MITROPOULOS A C. Removal of dyes from aqueous solutions with untreated coffee residues as potential low-cost adsorbents:equilibrium, reuse and thermodynamic approach[J]. Chemical Engineering Journal, 2012, 189/190:148-159. [24] JANOS P. Sorption of dyes from aqueous solutions onto fly ash[J]. Water Research. 2003, 37(20):4938-4944. [25] GANVIR V, DAS K. Removal of fluoride from drinking water using aluminum hydroxide coated rice husk ash[J]. Journal of Hazardous Materials, 2011, 185(2/3):1287-1294. [26] LIN J W, ZHAN Y H. Adsorption of humic acid from aqueous solution onto unmodified and surfactant-modified chitosan/zeolite composites[J]. Chemical Engineering Journal, 2012, 200:202-213. [27] SU Y, CUI H, LI Q, et al. Strong adsorption of phosphate by amorphous zirconium oxide nanoparticles[J]. Water Research, 2013, 47(14):5018-5026. [28] WANG S B, PENG Y L. Natural zeolites as effective adsorbents in water and wastewater treatment[J]. Chemical Engineering Journal, 2010, 156(1):11-24. [29] JIANG J X, YU J H, CORMA A. Extra-large-pore zeolites:bridging the gap between micro and mesoporous structures[J]. Angewandte Chemie International Edition, 2010, 49(18):3120-3145. [30] TAO Y S, KANOH H, ABRAMS L, et al. Mesopore-modified zeolites:preparation, characterization, and applications[J]. Chemical Reviews, 2006, 106(3):896-910. [31] SEPEHRI S, HEIDARPOUR M, ABEDIKOUPAI J. Nitrate removal from aqueous solution using natural zeolite-supported zero-valent iron nanoparticles[J]. Soil & Amp, Water Research, 2014, 9(4):224-232. [32] XU Y H,NAKAJIMA T,OHKI A.Adsorption and removal of arsenic (Ⅴ) from drinking water by aluminum-loaded Shirasu-zeolite[J]. Journal of Hazardous Materials, 2002, 92(3):275-287. [33] YUAN W W, YUAN P, LIU D, et al. A hierarchically porous diatomite/silicalite-1 composite for benzene adsorption/desorption fabricated via a facile pre-modification in situ synthesis route[J]. Chemical Engineering Journal, 2016, 294:333-342. [34] LEE K Y, KIM K W, PARK M, et al. Novel application of nanozeolite for radioactive cesium removal from high-salt wastewater[J]. Water Research, 2016, 95:134. [35] JIANG T, ZHONG W, JAFARI T, et al. Siloxane D4 adsorption by mesoporous aluminosilicates[J]. Chemical Engineering Journal, 2016, 289:356-364. [36] CAKICIOGLU-OZKAN F, ULKU S. The effect of HCl treatment on water vapor adsorption characteristics of clinoptilolite rich natural zeolite[J]. Microporous and Mesoporous Materials, 2005, 77(1):47-53. [37] CAICEDO-REALPE R, PEREZ-RAMIREZ J. Mesoporous ZSM-5 zeolites prepared by a two-step route comprising sodium aluminate and acid treatments[J]. Microporous and Mesoporous Materials, 2010, 128(1/2/3):91-100. [38] OUMI Y, MIZUNO R, AZUMA K, et al. Reversibility of dealumination-realumination process of BEA zeolite[J]. Microporous and Mesoporous Materials, 2001, 49(1/2/3):103-109. [39] SHEVADE S, FORD R G. Use of synthetic zeolites for arsenate removal from pollutant water[J]. Water Research, 2004, 38(14/15):3197-3204. [40] ZHAO L, GAO J S, XU C M, et al. Alkali-treatment of ZSM-5 zeolites with different SiO2/Al2O3 ratios and light olefin production by heavy oil cracking[J]. Fuel Processing Technology, 2011, 92(3):414-420. [41] OGURA M, SHINOMIYA S, TATENO J, et al. Alkali-treatment technique-new method for modification of structural and acid-catalytic properties of ZSM-5 zeolites[J]. Applied Catalysis A:General, 2001, 219(1/2):33-43. [42] LOGANATHAN P, VIGNESWARAN S, KANDASAMY J. Enhanced removal of nitrate from water using surface modification of adsorbents-a review[J]. Journal of Environmental Management, 2013, 131:363-374. [43] ARORA M, EDDY N K, MUMFORD K A, et al. Surface modification of natural zeolite by chitosan and its use for nitrate removal in cold regions[J]. Cold Regions Science and Technology, 2010, 62(2/3):92-97. [44] ZENG Y B, WOO H, LEE G, et al. Adsorption of Cr(Ⅵ) on hexadecylpyridinium bromide(HDPB) modified natural zeolites[J]. Microporous and Mesoporous Materials, 2010, 130(1/2/3):83-91. [45] KULEYIN A. Removal of phenol and 4-chlorophenol by surfactant-modified natural zeolite[J]. Journal of Hazardous Materials, 2007, 144(1/2):307-315. [46] BOUFFARD S C, DUFF S J B. Uptake of dehydroabietic acid using organically-tailored zeolites[J]. Water Research, 2000, 34(9):2469-2476. [47] LEI C, HU Y Y, HE M Z. Adsorption characteristics of triclosan from aqueous solution onto cetylpyridinium bromide(CPB) modified zeolites[J]. Chemical Engineering Journal, 2013, 219:361-370. [48] CHUTIA P, KATO S, KOJIMA T, et al. Adsorption of As(V) on surfactant-modified natural zeolites[J]. Journal of Hazardous Materials, 2009, 162(1):204-211. [49] LI C J, DONG Y, WU D Y, et al. Surfactant modified zeolite as adsorbent for removal of humic acid from water[J]. Applied Clay Science, 2011, 52(4):353-357. [50] LI Z H, BURT T, BOWMAN R S. Sorption of ionizable organic solutes by surfactant-modified zeolite[J]. Environmental Science & Technology, 2000, 34(17):3756-3760. [51] 谢强,谢杰,迟丽娜,等.一种能同时吸附水中多种污染物的新型吸附材料:表面活性剂改性沸石[J]. 中国科学(技术科学), 2013(8):921-929. XIE Q, XIE J, CHI L N, et al. A new sorbent that simultaneously sequesters multiple classes of pollutants from water:surfactant modified zeolite[J]. Science China(Technology Science), 2013(8):921-929. [52] LI Z H. Sorption kinetics of hexadecyltrimethylammonium on natural clinoptilolite[J]. Langmuir, 1999, 15(19):6438-6445. [53] AGHAⅡ M D, PAKIZEH M, AHMADPOUR A. Synthesis and characterization of modified UZM-5 as adsorbent for nitrate removal from aqueous solution[J]. Separation and Purification Technology, 2013, 113:24-32. [54] TAO Q, HU M, MA X F, et al. Simultaneous removal of ammonium and nitrate by HDTMA-modified zeolite[J]. Water Science and Technology, 2015, 72(11):1931-1939. [55] FAGHIHIAN H, BOWMAN R S. Adsorption of chromate by clinoptilolite exchanged with various metal cations[J]. Water Research, 2005, 39(6):1099-1104. [56] ARANCIBIA-MIRANDA N, BALTAZAR S E, GARCIA A, et al. Nanoscale zero valent supported by zeolite and montmorillonite:Template effect of the removal of lead ion from an aqueous solution[J]. Journal of Hazardous Materials, 2016, 301:371-380. [57] 林建伟,詹艳慧,陆霞.锆改性沸石对水中磷酸盐和铵的吸附特性[J].中国环境科学, 2012(11):2023-2031. LIN J W, ZHAN Y H, LU X. Adsorption of phosphate and ammonium from aqueous solution on zirconium modified zeolite[J]. China Environmental Science, 2012(11):2023-2031. [58] 黄春辉,李标国,周永芬,等.稀土离子与硫氰酸根及硝酸根的络合作用[J].高等学校化学学报, 1982(3):293-299. HUANG C H, LI B G, ZHOU Y F, et al. Complex formation of rare earth ions with thiocyanate and nitrate ions[J]. Chemical Journal of Chinese Universities, 1982(3):293-299. [59] 李宣文,佘励勤,刘兴云.镧离子在Y型分子筛中的定位和移动性的红外光谱研究[J].催化学报, 1982(1):34-42. LI X W, SHE L Q, LIU X Y. A study of the location and migration of lanthanum cation in Y zeolite by pyridine-IR method[J]. Chinese Journal of Catalysis, 1982(1):34-42. [60] SMITH J V, BENNETT AMP J M, FLANIGEN E M. Dehydrated lanthanum-exchanged type Y zeolite[J]. Nature, 1967, 215(5098):241-244. [61] YUSOF A M, MALEK N A N N.Removal of Cr(Ⅵ) and As(Ⅴ) from aqueous solutions by HDTMA-modified zeolite Y[J]. Journal of Hazardous Materials, 2009, 162(2/3):1019-1024. [62] YOUSEF R I, EL-ESWED B, AL-MUHTASEB A A H. Adsorption characteristics of natural zeolites as solid adsorbents for phenol removal from aqueous solutions:kinetics, mechanism, and thermodynamics studies[J]. Chemical Engineering Journal, 2011, 171(3):1143-1149. [63] 郑雯婧,林建伟,詹艳慧,等.锆-十六烷基三甲基氯化铵改性活性炭对水中硝酸盐和磷酸盐的吸附特性[J].环境科学, 2015(6):2185-2194. ZHENG W J, LIN J W, ZHAN Y H, et al. Adsorption characteristics of nitrate and phosphate from aqueous solution on zirconium-hexadecyltrimethylammonium chloride modified activated carbon[J]. Environmental Science, 2015(6):2185-2194. [64] LIN Y F, CHEN H W, CHIEN P S, et al. Application of bifunctional magnetic adsorbent to adsorb metal cations and anionic dyes in aqueous solution[J].Journal of Hazardous Materials,2011,185(2/3):1124-1130. [65] VALERIE S, ALEXANDRE T, CANDY L, et al. Recovery of hydroxycinnamic acids from renewable resources by adsorption on zeolites[J]. Chemical Engineering Journal, 2015, 280:748-754. |
| [1] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
| [2] | WANG Jiaqing, SONG Guangwei, LI Qiang, GUO Shuaicheng, DAI Qingli. Rubber-concrete interface modification method and performance enhancement path [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 328-343. |
| [3] | CUI Shoucheng, XU Hongbo, PENG Nan. Simulation analysis of two MOFs materials for O2/He adsorption separation [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 382-390. |
| [4] | CHEN Chongming, CHEN Qiu, GONG Yunqian, CHE Kai, YU Jinxing, SUN Nannan. Research progresses on zeolite-based CO2 adsorbents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 411-419. |
| [5] | WANG Ying, HAN Yunping, LI Lin, LI Yanbo, LI Huili, YAN Changren, LI Caixia. Research status and future prospects of the emission characteristics of virus aerosols in urban wastewater treatment plants [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 439-446. |
| [6] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Research progress on functionalization strategies of covalent organic frame materials and its adsorption properties for Hg(Ⅱ) and Cr(Ⅵ) [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 461-478. |
| [7] | GU Yongzheng, ZHANG Yongsheng. Dynamic behavior and kinetic model of Hg0 adsorption by HBr-modified fly ash [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 498-509. |
| [8] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
| [9] | LI Ning, LI Jinke, DONG Jinshan. Research and development of porous medium burner in ethylene cracking furnace [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 73-83. |
| [10] | ZHU Jie, JIN Jing, DING Zhenghao, YANG Huipan, HOU Fengxiao. Modification of CaSO4 oxygen carrier by Zhundong coal ash in chemical looping gasification and its mechanism [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4628-4635. |
| [11] | WANG Jingang, ZHANG Jianbo, TANG Xuejiao, LIU Jinpeng, JU Meiting. Research progress on modification of Cu-SSZ-13 catalyst for denitration of automobile exhaust gas [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4636-4648. |
| [12] | GAO Yanjing. Analysis of international research trend of single-atom catalysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4667-4676. |
| [13] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
| [14] | WANG Chen, BAI Haoliang, KANG Xue. Performance study of high power UV-LED heat dissipation and nano-TiO2 photocatalytic acid red 26 coupling system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4905-4916. |
| [15] | YANG Ying, HOU Haojie, HUANG Rui, CUI Yu, WANG Bing, LIU Jian, BAO Weiren, CHANG Liping, WANG Jiancheng, HAN Lina. Coal tar phenol-based carbon nanosphere prepared by Stöber method for adsorption of CO2 [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5011-5018. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |