[1] SHARMA A, TYAGI V V, CHEN C R, et al. Review on thermal energy storage with phase change materials and applications[J]. Renewable and Sustainable Energy Reviews, 2009, 13(2):318-345.
[2] 谢望平,汪南,朱冬生,相变材料强化传热研究进展[J]. 化工进展, 2008, 27(2):190-195. XIE W P, WANG N, ZHU D S, et al. Review of heat transfer enhancement of the PCMs[J]. Chemical Industry and Engineering Progress, 2008, 27(2):190-195.
[3] 朱冬生,吴淑英,李新芳,等. 纳米流体工质的基础研究及其蓄冷应用前景[J]. 化工进展, 2008, 27(6):857-860. ZHU D S, WU S Y, LI X F, et al. Fundamental investigation and application prospect of cool storage of nanofluids[J]. Chemical Industry and Engineering Progress, 2008, 27(6):857-860.
[4] METTAAEE E B S, ASSASSA G M R. Thermal conductivity enhancement in a latent heat storage system[J]. Solar Energy, 2007, 81(7):839-845.
[5] ALTOHAMY A A, RABBO M F A, SAKR R Y, et al. Effect of water based Al2O3 nanoparticle PCM on cool storage performance[J]. Applied Thermal Engineering, 2015, 84:331-338.
[6] BALANDLN A A, GHOSH S, BAO W, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 2008, 8(3):902-907.
[7] SATHISHKUMAR A, KUMARESAN V, VELRAJ R. Solidification characteristics of water based graphene nanofluid PCM in a spherical capsule for cool thermal energy storage applications[J]. International Journal of Refrigeration, 2016, 66:73-83.
[8] LI X, CHEN Y, CHENG Z, et al. Ultrahigh specific surface area of graphene for eliminating subcooling of water[J]. Applied Energy, 2014, 130(5):824-829.
[9] 贾莉斯, 彭岚, 陈颖, 等. 水基纳米流体的凝固行为[J]. 功能材料, 2014, 45(9):92-95. JIA L S, PENG F, CHEN Y, et al. Solidification behaviors of water-based nanofluids[J]. Functional Materials, 2014, 45(9):92-95.
[10] 吴淑英,朱冬生,杨硕. Al2O3-H2O纳米流体的相变蓄冷实验研究[J]. 工程热物理学报, 2009, 30(6):981-983. W U S Y, ZHU D S, YANG S. Experimental study on phase change cool storage of Al2O3-H2O nanofluids[J]. Journal of Engineering Thermophysics, 2009, 30(6):981-983.
[11] ARASU A V, MUJUMDAR A S. Numerical study on melting of paraffin wax with Al2O3 in a square enclosure[J]. International Communications in Heat and Mass Transfer, 2012, 39(1):8-16.
[12] ARASU A V, SASMITO A P, MUJUMDAR A S. Thermal performance enhancement of paraffin wax with Al2O3 and CuO nanoplatelets——a numerical study[J]. Frontiers in Heat and Mass Transfer, 2012, 2(4):043-048.
[13] VAJJHA R S, DAS D K, NAMBURU P K. Numerical study of fluid dynamic and heat transfer performance of Al2O3 and CuO nanofluids in the flat tubes of a radiator[J]. International Journal of Heat and Fluid Flow, 2010, 31(4):613-621.
[14] 李新芳,朱冬生. 纳米流体强化相变蓄冷特性的实验研究[J].材料导报, 2009, 23(6):11-13. LI X F, ZHU D S. Experimental study of cold storage characteristics of nanofluids as the phase change material[J]. Materials Review, 2009, 23(6):11-13.
[15] SHARMA R K, GANESAN P, SAHU J N, et al. Numerical study for enhancement of solidification of phase change materials using trapezoidal cavity[J]. Powder Technology, 2014, 268:38-47.
[16] 刘玉东,李夔宁,何钦波,等. 低温纳米复合相变蓄冷材料热物性研究[J]. 工程热物理学报, 2008, 29(1):105-107. LIU Y D, LI K N, HE Q B, et al. Study on thermal properties of low temperature nanocomposites for phase change cool storage[J]. Journal of Engineering Thermophysics, 2008, 29(1):105-107.
[17] MOTAHAR S, ALEMRAJABI A A, KHODABANDEH R. Experimental investigation on heat transfer characteristics during melting of a phase change material with dispersed TiO2 nanoparticles in a rectangular enclosure[J]. International Journal of Heat and Mass Transfer, 2017, 109:134-146.
[18] ARICI M, TÜTÜNCÜ E, KAN M, et al. Melting of nanoparticle-enhanced paraffin wax in a rectangular enclosure with partially active walls[J]. International Journal of Heat and Mass Transfer, 2017, 104:7-17.
[19] KHODADADI J M, HOSSEINIZADEH S F. Nanoparticle-enhanced phase change materials (NEPCM) with great potential for improved thermal energy storage[J]. International Journal of Heat and Mass Transfer, 2007, 34:534-543.
[20] BRINKMAN H C. The viscosity of concentrated suspensions and solutions[J]. Journal of Chemical Physics, 1952, 20(4):571-571.
[21] VOLLER V R, PRAKASH C. A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems[J]. International Journal of Heat and Mass Transfer, 1987, 30(8):1709-1719.
[22] CHANDRASEKARAN P, CHERALATHAN M, VELRAJ R, et al. Influence of the size of spherical capsule on solidification characteristics of DI (deionized water) water for a cool thermal energy storage system:an experimental study[J]. Energy, 2015, 90:807-813.
[23] GAU C, VISKANTA R. Melting and solidification of a pure metal on a vertical wall[J]. Journal of Heat Transfer, 1986, 108(1):174-181.
[24] BRENT A D, VOLLER V R, REID K J. Enthalpy-porosity technique for modeling convection-diffusion phase change:application to the melting of a pure metal[J]. Numerical Heat Transfer Applications, 1988, 13(3):297-318.
[25] 康亚盟,刁彦华,赵耀华,等. 纳米复合相变蓄热材料的制备与特性[J]. 化工学报, 2016, 67(1):372-379. KAN Y M, DIAO Y H, ZHAO Y H, et al. Preparation and properties of nano composite phase change thermal storage materials[J]. CIESC Journal, 2016, 67(1):372-379.
[26] 丁晴,方昕,闫晨,等. 石墨纳米片尺寸对复合相变材料储热特性的影响[J]. 化工学报, 2015, 66(6):2023-2031. DING Q, FANG X, YAN C, et al. Effects of graphite nanosheet size on thermal storage property of composite PCMs[J], CIESC Journal, 2015, 66(6):2023-2031.
[27] CHANDRASEKARAN P, CHERALATHAN M, KUMARESAN V, et al. Enhanced heat transfer characteristics of water based copper oxide nanofluid PCM (phase change material) in a spherical capsule during solidification for energy efficient cool thermal storage system[J]. Energy, 2014, 72(7):636-642.
[28] ALKAN C, SAR A, KARAIPEKLI A. Preparation thermal properties and thermal reliability of microencapsulated n-eicosane as novel phase change material for thermal energy storage[J]. Energy Conversion and Management, 2011, 52(1):687-692.
[29] DHAIDAN N S. Nanostructures assisted melting of phase change materials in various cavities[J]. Applied Thermal Engineering, 2017, 111:193-212.
[30] MAHDI J M, NSOFOR E C. Solidification of a PCM with nanoparticles in triplex-tube thermal energy storage system[J]. Applied Thermal Engineering, 2016, 108:596-604. |