Chemical Industry and Engineering Progress ›› 2018, Vol. 37 ›› Issue (01): 105-111.DOI: 10.16085/j.issn.1000-6613.2017-0759
Previous Articles Next Articles
JING Youzhi, YANG Li, ZHU Shuwei, SHU Xinqian
Received:
2017-04-25
Revised:
2017-08-20
Online:
2018-01-05
Published:
2018-01-05
景有志, 杨丽, 朱淑维, 舒新前
通讯作者:
舒新前,教授,博士生导师,主要从事洁净煤技术、与煤利用有关的环境污染控制工作以及固体废弃物能源化利用的研究。
作者简介:
景有志(1992-),男,硕士研究生。E-mail:jingyzcumtb@163.com。
基金资助:
CLC Number:
JING Youzhi, YANG Li, ZHU Shuwei, SHU Xinqian. Research progress on the SO2 and H2O resistance of Mn-Ti catalysts for low-temperature SCR[J]. Chemical Industry and Engineering Progress, 2018, 37(01): 105-111.
景有志, 杨丽, 朱淑维, 舒新前. 锰钛系低温选择性催化还原催化剂的抗SO2和抗H2O性能研究进展[J]. 化工进展, 2018, 37(01): 105-111.
[1] WALLⅡN M,FORSER S,THORMÄHLEN P,et al. Screening of TiO2-supported catalysts for selective NOx reduction with ammonia[J].Industrial & Engineering Chemistry Research,2016,43:7723-7731. [2] SMIRNIOTIS P G,PENA D A,UPHADE B S.ChemInform abstract:low-temperature selective catalytic reduction(SCR)of NO with NH3 by using Mn,Cr and Cu oxides supported on hombikat TiO2[M].ChemInform,2001:2479-2482. [3] TAUSTER S J,FUNG S C,GARTEN R L.Strong metal-support interactions.Group Ⅷ noble metals supported on titania[J].Journal of the American Chemical Society,1978,100(1):170-175. [4] HUANG Z,ZHU Z,LIU Z.Combined effect of H2O and SO2 on V2O5/AC catalysts for NO reduction with ammonia at lower temperatures[J].Applied Catalysis B:Environmental,2002,39(4):361-368. [5] QI G,YANG R T.Low-temperature selective catalytic reduction of NO with NH3 over iron and manganese oxides supported on titania[J].Applied Catalysis B:Environmental,2003,44(3):217-225. [6] JIANG B Q,WU Z B,LIU Y,et al.DRIFT study of the SO2 effect on low-temperature SCR reaction over Fe-Mn/TiO2[J].Journal of Physical Chemistry C,2010,114(11):4961-4965. [7] LONG R Q,YANG R T.Selective catalytic reduction of nitrogen oxides by ammonia over Fe3+-exchanged TiO2-pillared clay catalysts[J].Journal of Catalysis,1999,186(2):254-268. [8] WU Z,JIANG B,LIU Y,et al.DRIFT study of manganese/titania-based catalysts for low-temperature selective catalytic reduction of NO with NH3[J]. Environmental Science & Technology,2007,41(16):5812-5817. [9] LIU F,HE H.Selective catalytic reduction of NO with NH3 over manganese substituted iron titanate catalyst:reaction mechanism and H2O/SO2 inhibition mechanism study[J].Catalysis Today,2010,153(3/4):70-76. [10] 刘树军.SO2和H2O对Mn-Ce/TiO2低温SCR催化剂的影响[D].西安:西安建筑科技大学,2015. LIU S J.Effects of SO2 and H2O on Mn-Ce/TiO2 catalyst for low-temperature SCR[D]. Xi'an:Xi'an University of Architecture,2015. [11] 闫东杰,玉亚,黄学敏,等.SO2对Mn-Ce/TiO2低温SCR催化剂的毒化作用研究[J].燃料化学学报,2016,44(2):232-238. YAN D J,YU Y,HUANG X M,et al.Poisoning effect of SO2 on Mn-Ce/TiO2 catalysts for NO reduction by NH3 at low temperature[J]. Journal of Fuel Chemistry and Technology,2016,44(2):232-238. [12] 胡宇峰,薛建明,王小明,等.Mn-Ce/TiO2低温选择性催化还原催化剂二氧化硫中毒及再生特性[J].工业催化,2013,21(4):27-33. HU Y F,XUE J M,WANG X M,et al.Research on characteristics of SO2-poison and regeneration of Mn-Ce/TiO2 catalyst for low temperature selective catalytic reduction[J].Industrial Catalysis,2013,21(4):27-33. [13] LIM S S,LEE H J,MOON D J,et al.Autothermal reforming of propane over Ce modified Ni/LaAl2O3 perovskite-type catalysts[J].Chemical Engineering Journal,2009,152(1):220-226. [14] XU R,YANG C,WEI W,et al.Fe-modified CuMnZrO2 catalysts for higher alcohols synthesis from syngas[J].Journal of Molecular Catalysis A:Chemical,2004,221(1/2):51-58. [15] PARVULESCU V,TABLET C,ANASTASESCU C,et al.Activity and stability of bimetallic Co(V,Nb,La)-modified MCM-41 catalysts[J].Catalysis Today,2004,93(9):307-313. [16] PERALTA M A,MILT V G,CORNAGLIA L M,et al.Stability of Ba,K/CeO2 catalyst during diesel soot combustion:effect of temperature,water,and sulfur dioxide[J].Journal of Catalysis,2006,242(1):118-130. [17] 金瑞奔.负载型Mn-Ce系列低温SCR脱硝催化剂制备、反应机理及抗硫性能研究[D].杭州:浙江大学,2010. JIN R B.Study on the supported Mn-Ce low-temperature SCR DeNOx catalysts:preparation,reaction mechanism and SO2 tolerance[D].Hangzhou:Zhejiang University,2010. [18] JIN R,LIU Y,WANG Y,et al.The role of cerium in the improved SO2 tolerance for NO reduction with NH3 over Mn-Ce/TiO2 catalyst at low temperature[J].Applied Catalysis B:Environmental,2014,148/149(4):582-588. [19] 周玲玲.NiO改性和PbO掺杂对Mn-Ce/TiO2催化剂低温脱硝性能影响的研究[D].长沙:湖南大学,2016. ZHOU L L.The modification of NiO and the doping of PbO on Mn-Ce/TiO2 catalyst for selective catalytic reduction of NO with NH3 at low temperature[D].Changsha:Hunan University,2016. [20] 于国峰.Mn-Ce/TiO2系低温SCR催化剂脱硝性能及蜂窝状成型制备研究[D].杭州:浙江工业大学,2012. YU G F.Study on the Mn-Ce/TiO2 low-temperature SCR catalysts:denitration performance and preparation method of honeycombed catalyst[D].Hangzhou:Zhejiang University of Technology,2012. [21] YANG S,ZHU W,JIANG Z,et al.The surface properties and the activities in catalytic wet air oxidation over CeO2-TiO2 catalysts[J].Applied Surface Science,2006,252(24):8499-8505. [22] MEKHEMER G A H.Surface acid-base properties of holmium oxide catalyst:in situ infrared spectroscopy[J].Applied Catalysis A:General,2004,275(1):1-7. [23] 张亚平,朱一闻,肖睿,等.一种高抗硫超低温SCR脱硝催化剂及其制备方法:105879879A[P].2016-08-25. ZHANG Y P,ZHU Y W,XIAO R,et al.A high desulfurization ultra-low temperature SCR denitration catalyst and its preparation:105879879A[P].2016-08-25. [24] ZHU Y,ZHANG Y,XIAO R,et al.Novel holmium-modified Fe-Mn/TiO2 catalysts with a broad temperature window and high sulfur dioxide tolerance for low-temperature SCR[J]. Catalysis Communications,2017,88:64-67. [25] TIAN Q,LIU H,YAO W,et al.SO2 poisoning behaviors of Ca-Mn/TiO2 catalysts for selective catalytic reduction of NO with NH3 at low temperature[J]. Journal of Nanomaterials,2015,2014(4):1-6. [26] DONG W K,NAM K B,HONG S C.Influence of tungsten on the activity of a Mn/Ce/W/Ti catalyst for the selective catalytic reduction of NO with NH3 at low temperatures[J]. Applied Catalysis A:General,2015,497:160-166. [27] 廖永进,张亚平,余岳溪,等.MnOx/WO3/TiO2低温选择性催化还原NOx机理的原位红外研究[J].化工学报,2016,67(12):5031-5039. LIAO Y J,ZHANG Y P,YU Y X,et al.In situ FT-IR studies on low temperature NH3-SCR mechanism of NOx over MnOx/WO3/TiO2 catalyst[J].CIESC Jorunal,2016,67(12):5031-5039. [28] 王春兰,宋浩,韩东琴.SCR脱硝催化剂再生技术的发展及应用[J].中国环保产业,2014(4):22-25. WANG C L,SONG H,HAN D Q.Development and application of recycling technology of SCR denitration catalytic agent[J].China Environmental Protection Industry,2014(4):22-25. [29] 周昊.SCR低温脱硝催化剂的制备与研究[D].北京:中国矿业大学(北京),2016. ZHOU H.A development study on low temperature catalyst for SCR[D].Beijing:China University of Mining & Technology,Beijing,2016. [30] 张蕊.F掺杂铈钛低温SCR催化剂的制备及脱硝性能研究[D].南京:南京理工大学,2014. ZHANG R.Study on the preparation and denitration performance of F-doped cerium titanium low-temperature SCR catalysts[D]. Nanjing:Nanjing University of Science & Technology,2014. [31] 毛东森,卢冠忠,陈庆龄.钛锆复合氧化物的制备及催化性能的研究[J].工业催化,2005,13(4):1-6. MAO D S,LU G Z,CHEN Q L.Preparation and catalytic properties of composite titanium-zirconium oxides[J].Industrial Catalysis,2005,13(4):1-6. [32] CHEN Q L,GUO R T,WANG Q S,et al.The catalytic performance of Mn/Ti WOx catalyst for selective catalytic reduction of NOx with NH3[J].Fuel,2016,181:852-858. [33] 卢熙宁.半干法脱硫后的烧结烟气低温SCR脱硝催化剂的研发[D].北京:北京科技大学,2015. LU X N.The research and development of low temperature SCR catalyst after sintering flue gas semi-dry desulphurization[D]. Beijing:University of Science and Technology Beijing,2014. [34] 钟柳成,林赫,黄震.添加SiO2对钛基锰铈氧化物SCR催化剂性能的影响[J].现代车用动力,2013(1):35-42. ZHONG L C,LIN H,HUANG Z.Effects of SiO2 addition on SCR performance of TiO2 supported manganese-cerium catalysts[J]. Modern Vehicle Power,2013(1):35-42. [35] 吴大旺,张秋林,林涛,等.CexTi1-xO2负载锰基催化剂的制备及其低温NH3选择催化还原NO[J].无机化学学报,2011,27(1):53-60. WU D W,ZHANG Q L,LIN T,et al.CexTi1-xO2 supported manganese-based catalyst:preparation and catalytic performance for selective reduction of NO with NH3 at lower temperature[J].Chinese Journal of Inorganic Chemistry,2011,27(1):53-60. [36] JIANG B,DENG B,ZHANG Z,et al.Effect of Zr addition on the low-temperature SCR activity and SO2 tolerance of Fe-Mn/Ti catalysts[J].Journal of Physical Chemistry C,2014,118(27):14866-14875. [37] SHEN B,LIU T,ZHAO N,et al.Iron-doped Mn-Ce/TiO2 catalyst for low temperature selective catalytic reduction of NO with NH3[J].Journal of Environmental Sciences,2010,22(9):1447-1454. [38] JIANG B Q,LIU Y,WU Z B.Low-temperature selective catalytic reduction of NO on MnOx/TiO2 prepared by different methods[J].Journal of Hazardous Materials,2009,162(2/3):1249-1254. [39] YU J,GUO F,WANG Y,et al.Sulfur poisoning resistant mesoporous Mn-base catalyst for low-temperature SCR of NO with NH3[J].Applied Catalysis B-Environmental,2010,95(1/2):160-168. [40] 江博琼.Mn/TiO2系列低温SCR脱硝催化剂制备及其反应机理研究[D].杭州:浙江大学,2008. JIANG B Q.The preparation of Mn/TiO2 series low-temperature SCR DeNOx catalysts and its reaction mechanism[D].Hangzhou:Zhejiang University,2008. [41] 张长亮.酸改性Mn-Co-Ce/TiO2-SiO2低温SCR催化剂抗硫性能及成型的研究[D].哈尔滨:哈尔滨工业大学,2015. ZHANG C L.Study on the anti-sulfur formance and the formation of the SCR catalyst with acid modified Mn-Co-Ce/TiO2-SiO2 at low temperature[D].Harbin:Harbin Institute of Technology,2015. [42] QIU L,WANG Y S,PANG D,et al.SO42-Mn-Co-Ce supported on TiO2/SiO2 with high sulfur durability for low-temperature SCR of NO with NH3[J].Catalysis Communications,2016,78:22-25. [43] YANG B,SHEN Y S,SU Y,et al.Functional-membrane coated Mn-La-Ce-Ni-Ox catalysts for selective catalytic reduction NO by NH3 at low-temperature[J].Catalysis Communications,2017,94:47-51. [44] LEE T Y,LIOU S,BAI H.Comparison of titania nanotubes and titanium dioxide as supports of low-temperature selective catalytic reduction catalysts under sulfur dioxide poisoning[J].Journal of the Air & Waste Management Association,2017,67(3):292-305. [45] 张呈祥,张晓鹏.Mn-Ce系列低温SCR催化剂抗硫性研究进展[J].化工进展,2015,34(7):1866-1871. ZHANG C X,ZHANG X P.Research progress in the SO2 resistance of Mn-Ce SCR catalysts[J].Chemical Industry and Engineering Progress,2015,34(7):1866-1871. |
[1] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[2] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[3] | LUO Cheng, FAN Xiaoyong, ZHU Yonghong, TIAN Feng, CUI Louwei, DU Chongpeng, WANG Feili, LI Dong, ZHENG Hua’an. CFD simulation of liquid distribution in different distributors in medium-low temperature coal tar hydrogenation reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4538-4549. |
[4] | LI Dongze, ZHANG Xiang, TIAN Jian, HU Pan, YAO Jie, ZHU Lin, BU Changsheng, WANG Xinye. Research progress of NO x reduction by carbonaceous substances for denitration in cement kiln [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4882-4893. |
[5] | ZHU Chuanqiang, RU Jinbo, SUN Tingting, XIE Xingwang, LI Changming, GAO Shiqiu. Characteristics of selective non-catalytic reduction of NO x with solid polymer denitration agent [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4939-4946. |
[6] | BAI Zhihua, ZHANG Jun. Oxidative removal of NO in DTPMPA/Fenton system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4967-4973. |
[7] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
[8] | LI Jia, FAN Xing, CHEN Li, LI Jian. Research progress of simultaneous removal of NO x and N2O from the tail gas of nitric acid production [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3770-3779. |
[9] | SUN Zhengnan, LI Hongjing, JING Guolin, ZHANG Funing, YAN Biao, LIU Xiaoyan. Application of EVA and its modified polymer in crude oil pour point depressant field [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2987-2998. |
[10] | YIN Pengzhen, WU Qin, LI Hansheng. Advances in catalysts for liquid-phase selective oxidation of methyl aromatic hydrocarbons [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2916-2943. |
[11] | ZHANG Peng, PAN Yuan. Progress of single atom catalysts in electrocatalytic oxygen reduction to hydrogen peroxide [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2944-2953. |
[12] | ZHANG Wei, QIN Chuan, XIE Kang, ZHOU Yunhe, DONG Mengyao, LI Jie, TANG Yunhao, MA Ying, SONG Jian. Application and performance enhancement challenges of H2-SCR modified platinum-based catalysts for low-temperature denitrification [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2954-2962. |
[13] | XU Xian, CUI Louwei, LIU Jie, SHI Junhe, ZHU Yonghong, LIU Jiaojiao, LIU Tao, ZHENG Hua’an, LI Dong. Effect of raw material composition on the development of semicoke mesophase structure [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2343-2352. |
[14] | NING Shuying, SU Yaxin, YANG Honghai, WEN Nini. Research progress on supported Cu-based zeolite catalysts for the selective catalytic reduction of NO x with hydrocarbons [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1308-1320. |
[15] | YUAN Li, WANG Xueqian, LI Xiang, WANG Langlang, MA Yixing, NING ping, XIONG Yiran. Research advances on catalytic removal COS and H2S from by-product gas in iron and steel industry [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5147-5161. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 537
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 332
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |