Chemical Industry and Engineering Progress ›› 2017, Vol. 36 ›› Issue (05): 1698-1710.DOI: 10.16085/j.issn.1000-6613.2017.05.019
Previous Articles Next Articles
CHEN Yanlong, ZHU Linhua, SI Tian
Received:
2016-08-28
Revised:
2017-01-13
Online:
2017-05-05
Published:
2017-05-05
陈颜龙, 祝琳华, 司甜
通讯作者:
祝琳华,教授,主要研究方向为新型催化材料制备及性能。
作者简介:
陈颜龙(1989-)男,硕士研究生,主要研究方向为化工催化材料。E-mail:cylong360@163.com。
基金资助:
CLC Number:
CHEN Yanlong, ZHU Linhua, SI Tian. Research progress in the oxidative dehydrogenation of propane over vanadia-based catalyst: from aerobic to oxygen-free reaction[J]. Chemical Industry and Engineering Progress, 2017, 36(05): 1698-1710.
陈颜龙, 祝琳华, 司甜. 钒基催化剂上丙烷氧化脱氢制丙烯研究进展:从有氧到无氧[J]. 化工进展, 2017, 36(05): 1698-1710.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2017.05.019
[1] CHAAR M A,PATEL D,KUNG H H. Selective oxidative dehydrogenation of propane over vanadium magnesium oxide catalysts[J]. Journal of Catalysis,1988,109(2):463-467. [2] CAVANI F,BALLARINI N,CERICOLA A. Oxidative dehydrogenation of ethane and propane:how far from commercial implementation?[J]. Catalysis Today,2007,127(1/4):113-131. [3] CARRERO C A,SCHLOEGL R,WACHS I E,et al. Critical literature review of the kinetics for the oxidative dehydrogenation of propane over well-defined supported vanadium oxide catalysts[J]. ACS Catalysis,2014,4(10):3357-3380. [4] GOYAL R,SARKAR B,BAG A,et al. Single-step synthesis of hierarchical BxCN:a metal-free catalyst for low-temperature oxidative dehydrogenation of propane[J]. Journal of Materials Chemistry A,2016,4(47):18559-18569. [5] LIU Q L,LI J M,ZHAO Z,et al. Design,synthesis and catalytic performance of vanadium-incorporated mesoporous silica KIT-6 catalysts for the oxidative dehydrogenation of propane to propylene[J]. Catalysis Science & Technology,2016,6(15):5927-5941. [6] KHODAKOV A,OLTHOF B,BELL A T,et al. Structure and catalytic properties of supported vanadium oxides:support effects on oxidative dehydrogenation reactions[J]. Journal of Catalysis,1999,181(2):205-216. [7] CORMA,LOPEZ-NIETO J M,PAREDES N,et al. Oxidative dehydrogenation of propane on vanadium supported on magnesium silicates[J]. Applied Catalysis A:General,1993,97(2):159-175. [8] GRUENE P,WOLFRAM T,PELZER K,et al. Role of dispersion of vanadia on SBA-15 in the oxidative dehydrogenation of propane[J]. Catalysis Today,2010,157(1/4):137-147. [9] CHEN K D,BELL A T,IGLESIA E. The relationship between the electronic and redox properties of dispersed metal oxides and their turnover rates in oxidative dehydrogenation reactions[J]. Journal of Catalysis,2002,209(1):35-42. [10] LOPEZ N,JOSE M. The selective oxidative activation of light alkanes. From supported vanadia to multicomponent bulk V-containing catalysts[J]. Topics in Catalysis,2006,41(1/4):3-15. [11] CORMA A,LOPEZ-NIETO J M,PAREDES N,et al. Oxidative dehydrogenation of propane over supported-vanadium oxide catalysts[J].Studies in Surface Science and Catalysis,1992,72:213-220. [12] KHODAKOV A,OLTHOF B,BELL A T,et al. Structure and catalytic properties of supported vanadium oxides:support effects on oxidative dehydrogenation reactions[J]. Journal of Catalysis,1999,181(2):205-216. [13] KARAKOULIA S A,TRIANTAFYLLIDIS K S,LEMONIDOU A A. Preparation and characterization of vanadia catalysts supported on non-porous,microporous and mesoporous silicates for oxidative dehydrogenation of propane (ODP)[J]. Microporous and Mesoporous Materials,2008,110(1):157-166. [14] KARAKOULIA S A,TRIANTAFYLLIDIS K S,TSILOMELEKIS G,et al. Propane oxidative dehydrogenation over vanadia catalysts supported on mesoporous silicas with varying pore structure and size[J]. Catalysis Today,2009,141(3/4):245-253. [15] 缪建文,宋国华,范以宁.不同孔道结构的氧化硅负载氧化物催化丙烷氧化脱氢[J]. 催化学报,2009,30(11):1143-1149. MIAO J W,SONG G H,FAN Y N. Propane oxidative dehydrogenation over vanadia catalysts supported on silicas with different pore structures[J]. Chinese Journal of Catalysis,2009,30(11):1143-1149. [16] 邵高耸.分级结构卷心菜叶形磷酸铈材料的制备及性能[J]. 化工学报,2016,67(4):1602-1609. SHAO G S. Preparation and catalytic activity of hierarchical interlinked structure of cabbage-leaf-like cerium phosphate materials[J]. CIESC Journal,2016,67(4):1602-1609. [17] CHEN S,MA F,XU A X,et al. Study on the structure,acidic properties of V-Zr nanocrystal catalysts in oxidative dehydrogenation of propane[J]. Applied Surface Science,2014,289:316-325. [18] CHEN S,LI Y H,MA F,et al. The relationship between the surface oxygen species and the acidic properties of mesoporous metal oxides and their effects on propane oxidation[J]. Catalysis Science & Technology,2015,5(2):1213-1221. [19] ZAYNALI Y,ALAVI S M. Higher propene yield by tailoring operating conditions of propane oxidative dehydrogenation over V2O5/γ-Al2O3[J]. Journal of the Serbian Chemical Society,2015,80(3):355-366. [20] 曹冬冬,林少波,隋志军,等.丙烷脱氢反应过程的研究Ⅰ.空管材质和器壁的影响[J].石油化工,2015,44(2):154-162. CAO D D,LIN S B,SUI Z J,et al. Dehydrogenation of propane Ⅰ. Effects of wall properties of tubular flow reactor[J]. Petrochemical Technology,2015,44(2):154-162. [21] 林少波,单玉领,隋志军,等.氧对丙烷脱氢反应体系影响的热力学分析[J].化工进展,2015,34(4):970-975. LIN S B,SHAN Y L,SUI Z J,et al.Thermodynamic analysis of effects of oxygen addition on dehydrogenation of propane[J]. Chemical Industry and Engineering Process,2015,34(4):970-975. [22] FUKUDOME K,IKENAGA N O,MIYAKE T. Oxidative dehydrogenation of propane using lattice oxygen of vanadium oxides on silica[J]. Catalysis Science & Technology,2011,1(6):987-998. [23] FUKUDOME K,IKENAGA N O,MIYAKE T,et al. Oxidative dehydrogenation of alkanes over vanadium oxide prepared with V(t-BuO)3O and Si(OEt)4 in the presence of polyethyleneglycol[J]. Catalysis Today,2013,203:10-16. [24] FUKUDOME K,SUZUKI T. Highly selective oxidative dehydrogenation of propane to propylene over VOx-SiO2 catalysts[J].Catalysis Surveys from Asia,2015,19(3):172-187. [25] OVSITSER O,SCHOMAECKER R,KONDRATENKO E V. Highly selective and stable propane dehydrogenation to propene over dispersed VOx-species under oxygen-free and oxygen-lean conditions[J]. Catalysis Today,2012,192(1):16-19. [26] 李春义,王国玮.一种烷烃脱氢制烯烃循环流化床反应装置:104549073 A[P].2015-4-29. LI C Y,WANG G W. A circulating fluidized bed reactor for preparing olefins by alkane dehydrogenation:104549073 A[P]. 2015-4-29. [27] RUBIO O,HERGUIDO J,MENENDEZ M. Two-zone fluidized bed reactor for simultaneous reaction and catalyst reoxidation:influence of reactor size[J]. Applied Catalysis A:General,2004,272(1/2):321-327. [28] AL-GHAMDI S A,DE LASA H I. Propylene production via propane oxidative dehydrogenation over VOx/γ-Al2O3 catalyst[J]. Fuel,2014,128:120-140. [29] AYANDIRAN A A,BAKARE I A,BINOUS H,et al. Oxidative dehydrogenation of propane to propylene over VOx/CaO-γ-Al2O3 using lattice oxygen[J]. Catalysis Science & Technology,2016,6(13):5154-5167. [30] HAMEL C,WOLFF T,SUBRAMANIAM P,et al. Multicomponent dosing in membrane reactors including recycling-concept and demonstration for the oxidative dehydrogenation of propane[J]. Industrial & Engineering Chemistry Research,2011,50(23):12895-12903. [31] CZUPRAT O,WERTH S,CARO J,et al. Oxidative dehydrogenation of propane in a perovskite membrane reactor with multi-step oxygen insertion[J]. AIChE Journal,2010,56(9):2390-2396. [32] CRAPANZANO S,BABICH I V,LEFFERTS L. Selection of mixed conducting oxides for oxidative dehydrogenation of propane with pulse experiments[J]. Applied Catalysis A:General,2011,391(1/2):70-77. [33] MARS P,VAN KREVELEN D W. Oxidations carried out by means of vanadium oxide catalysts[J]. Chemical Engineering Science,1954,3:41-59. [34] DINSE A,KHENNACHE S,FRANK B,et al. Oxidative dehydrogenation of propane on silica (SBA-15) supported vanadia catalysts:a kinetic investigation[J]. Journal of Molecular Catalysis A:Chemical,2009,307(1/2):43-50. [35] CHEN K D,KHODAKOV A,YANG J,et al. Isotopic tracer and kinetic studies of oxidative dehydrogenation pathways on vanadium oxide catalysts[J]. Journal of Catalysis,1999,186(2):325-333. [36] KONDRATENKO E V,STEINFELDT N,BAERNS M. Transient and steady state investigation of selective and non-selective reaction pathways in the oxidative dehydrogenation of propane over supported vanadia catalysts[J]. Physical Chemistry Chemical Physics,2006,8(13):1624-1633. [37] ROZANSKA X,FORTRIE R,SAUER J. Oxidative dehydrogenation of propane by monomeric vanadium oxide sites on silica support[J]. Journal of Physical Chemistry C,2007,111(16):6041-6050. [38] ROZANSKA X,FORTRIE R,SAUER J. Size-dependent catalytic activity of supported vanadium oxide species:oxidative dehydrogenation of propane[J]. Journal of the American Chemical Society,2014,136(21):7751-7761. [39] BARMANa S,MAITY N,BHATTE K,et al. Single-site VOx moieties generated on silica by surface organometallic chemistry:a way to enhance the catalytic activity in the oxidative dehydrogenation of propane[J]. ACS Catalysis,2016,6(9):5908-5921. [40] AVDEEV V I,BEDILO A F. Molecular mechanism of propane oxidative dehydrogenation on surface oxygen radical sites of VOx/TiO2 catalysts[J]. Research on Chemical Intermediates,2016,42(6):5237-5257. [41] GILARDONI F,BELL A T,CHAKRABORTY A,et al. Density functional theory calculations of the oxidative dehydrogenation of propane on the (010) surface of V2O5[J]. Journal of Physical Chemistry B,2000,104(51):12250-12255. [42] LIU Y M,FENG W L,LI T C,et al. Structure and catalytic properties of vanadium oxide supported on mesocellulous silica foams (MCF) for the oxidative dehydrogenation of propane to propylene[J]. Journal of Catalysis,2006,239(1):125-136. [43] BULANEK R,CICMANEC P,HSU S Y,et al. Effect of preparation method on nature and distribution of vanadium species in vanadium-based hexagonal mesoporous silica catalysts:impact on catalytic behavior in propane ODH[J]. Applied Catalysis A:General,2012,415/416:29-39. [44] GRANT J T,CARRERO C A,LOVE A M. Enhanced two-dimensional dispersion of group V metal oxides on silica[J]. ACS Catalysis,2015,5(10):5787-5793. [45] KONDRATENKO E V,CHERIAN M,BAERNS M. Oxidative dehydrogenation of propane over V/MCM-41 catalysts:comparison of O2 and N2O as oxidants[J]. Journal of Catalysis,2005,234(1):131-142. [46] MICHORCZYK P,OGONOWSKI J. Dehydrogenation of propane to propene over gallium oxide in the presence of CO2[J]. Applied Catalysis A:General,2003,251(2):425-433. [47] SOKOLOV S,STOYANOVA M,RODEMERCK U. Effect of support on selectivity and on-stream stability of surface VOx species in non-oxidative propane dehydrogenation[J]. Catalysis Science & Technology,2014,4(5):1323-1332. [48] SOKOLOV S, STOYANOVA M,RODEMERCK U,et al. Comparative study of propane dehydrogenation over V-,Cr-,and Pt-based catalysts:time on-stream behavior and origins of deactivation[J]. Journal of Catalysis,2012,293:67-75. [49] BERETTA A,PIOVESAN L,FORZATTI P. An investigation on the role of a Pt/Al2O3 catalyst in the oxidative dehydrogenation of propane in annular reactor[J]. Journal of Catalysis,1999,184(2):455-468. [50] VISLOVSKIY V P,SULEIMANOV T E,SINEV M Y,et al. On the role of heterogeneous and homogeneous processes in oxidative dehydrogenation of C3-C4 alkanes[J]. Catalysis Today,2000,61(1/4):287-293. [51] SINEV M Y,FATTAKHOVA Z T,TULENIN Y P,et al. Hydrogen formation during dehydrogenation of C2-C4 alkanes in the presence of oxygen:oxidative or non-oxidative?[J]. Catalysis Today,2003,81(2):107-116. [52] 林少波,曹冬冬,方锋猛,等.丙烷脱氢反应过程的研究Ⅱ.石英空管反应器中氧的影响[J]. 石油化工,2015,44(7):815-821. LIN S B,CAO D D,FANG F M,et al. Dehydrogenation of propane Ⅱ. Effects of oxygen in flow tubular quartz reactor[J]. Petrochemical Technology,2015,44(7):815-821. [53] BALLARINI N,CAVANI F,CERICOLA A,et al. Improvement of the selectivity to propylene by the use of cyclic,redox-decoupling conditions in propane oxidehydrogenation[J]. Studies in Surface Science and Catalysis,2004,147:649-654. [54] OVSITSER O,KONDRATENKO E V. Selective and stable isobutene production over highly dispersed VOx species on SiO2 supports via combining oxidative and non-oxidative iso-butane dehydrogenation[J]. Chemical Communications,2010,46(27):4974-4976. [55] DARVISHI A,DAVAND R,KHORASHEH F. Modeling-based optimization of a fixed-bed industrial reactor for oxidative dehydrogenation of propane[J]. Chinese Journal of Chemical Engineering,2016,24(5):612-622. [56] STEINFELDT N,DINGERDISSEN U,BAERNS M. Application of a multichannel microstructured reactor for studies of oxidative propane dehydrogenation[J]. Chemical Engineering & Technology,2005,28(4):421-425. [57] CREASER D C,ANDERSSON B,HUDGINS R R,et al. Kinetic modeling of oxygen dependence in oxidative dehydrogenation of propane[J]. Canadian Journal of Chemical Engineering,2000,78(1):182-193. [58] KONDRATENKO E V,CHERIAN M,BAERNS M. Mechanistic aspects of the oxidative dehydrogenation of propane over an alumina-supported VCrMnWOx mixed oxide catalyst[J]. Catalysis Today,2005,99(1/2):59-67. [59] ZANTHOFF H W,BUCHHOLZ S A,PANTAZIDIS A,et al. Selective and non-selective oxygen species determining the product selectivity in the oxidative conversion of propane over vanadium mixed oxide catalysts[J]. Chemical Engineering Science,1999,54(20):4397-4405. [60] OVSITSER O,CHERIAN M,KONDRATENKO E V. In-situ UV/Vis and transient isotopic analysis of the role of oxidizing agent in the oxidative dehydrogenation of propane over silica-supported vanadia catalysts[J]. Journal of Physical Chemistry C,2007,111(24):8594-8602. [61] ROZANSKA X,KONDRATENKO E V,SAUER J. Oxidative dehydrogenation of propane:differences between N2O and O2 in the reoxidation of reduced vanadia sites and consequences for selectivity[J]. Journal of Catalysis,2008,256(1):84-94. [62] KONDRATENKO E V,BRUECKNER A. On the nature and reactivity of active oxygen species formed from O2 and N2O on VOx/MCM-41 used for oxidative dehydrogenation of propane[J]. Journal of Catalysis,2010,274(1):111-116. [63] DELASA H I. Riser simulator:CA1284017[P]. 1991-05-15. |
[1] | ZHANG Zuoqun, GAO Yang, BAI Chaojie, XUE Lixin. Thin-film nanocomposite (TFN) mixed matrix reverse osmosis (MMRO) membranes from secondary interface polymerization containing in situ grown ZIF-8 nano-particles [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 364-373. |
[2] | CHEN Xiangli, LI Qianqian, ZHANG Tian, LI Biao, LI Kangkang. Research progress on self-healing oil/water separation membranes [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3600-3610. |
[3] | REN Zhongyuan, HE Jinlong, YUAN Qing. Research progress on intercrystalline defects control and remediation technologies for zeolite membranes [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2454-2463. |
[4] | FAN Yunpei, JIN Jing, LIU Dunyu, WANG Jingjie, LIU Qiuqi, XU Kailong. Mercury removal by CaSO4 oxygen carrier during in-situ gasification and chemical-looping combustion of coal [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1638-1648. |
[5] | SUN Mengwei, LIU Zhuang, XIE Rui, JU Xiaojie, WANG Wei, CHU Liangyin. Preparation of Lanthanum ion intercalated MoS2 membrane for treating dyeing wastewater with high brine [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 346-353. |
[6] | GAO Weitao, YIN Qinan, TU Ziqiang, GONG Fan, LI Yang, XU Hong, WANG Cheng, MAO Zongqiang. Proton transport in metal-organic frameworks and their applications in proton exchange membranes [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 260-268. |
[7] | ZHANG Hongming, LU Jiongyuan, WANG Sanfan. Research progress on molecular structure of anion exchange membrane for fuel cells [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 318-330. |
[8] | FANG Kejing, XIONG Zuhong, LU Min, LI Tao, CHEN Yong. Research progress in preparation, thermal conversion characteristics and application of refuse derived fuel [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 132-140. |
[9] | FANG Longlong, ZHENG Wenji, NING Mengjia, ZHANG Mingyang, YANG Yuqing, DAI Yan, HE Gaohong. Enhanced CO2 separation of mixed matrix membranes by functionalized Zr-MOF [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4954-4962. |
[10] | ZHANG Saihui, LI Xiaoyang, GAO Hui, WANG Lili. Recent progress in additives in interfacial polymerization for the preparation of polyamide composite membrane [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4884-4894. |
[11] | ZHU Xiao, ZHU Junyong, ZHANG Yatao. Research progress of metal organic framework/polyamide thin film nanocomposite membrane [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4314-4326. |
[12] | HAN Guanglu, LU Kuan, LYU Jie, ZHANG Yonghui, CHEN Mohan. Carboxyl graphene composite membranes covalently crosslinked with diols and the n-butanol dehydration properties [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3801-3807. |
[13] | LI Peishan, ZHANG Mengchen, LI Mingjie, ZHENG Wenbiao, LIU Minchao, XIE Gaoyi, XU Xiaolong, LIU Changyu, JIA Jianbo. Nanofluidic channels based on two-dimensional material membranes [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3745-3757. |
[14] | XU Zhi, HUANG Kang. Research progress of porous ion conductive membranes in batteries [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1569-1577. |
[15] | GAO Weitao, LEI Yijie, ZHANG Xun, HU Xiaobo, SONG Pingping, ZHAO Qing, WANG Cheng, MAO Zongqiang. An overview of proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1539-1555. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |