Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (03): 1403-1410.DOI: 10.16085/j.issn.1000-6613.2018-0582
Previous Articles Next Articles
Diaoyu ZHOU(),Taotao LI,Hui WANG,Junwei QIAO,Wei LIANG(
)
Received:
2018-03-23
Revised:
2018-07-05
Online:
2019-03-05
Published:
2019-03-05
Contact:
Wei LIANG
通讯作者:
梁伟
作者简介:
基金资助:
CLC Number:
Diaoyu ZHOU,Taotao LI,Hui WANG,Junwei QIAO,Wei LIANG. Preparation and photocatalytic properties of Au@TiO2 nanotube arrays[J]. Chemical Industry and Engineering Progress, 2019, 38(03): 1403-1410.
周琱玉,李涛涛,王辉,乔珺威,梁伟. Au@TiO2纳米管阵列的制备及光催化性能[J]. 化工进展, 2019, 38(03): 1403-1410.
c 0 | —— | 光降解前亚甲基蓝溶液的浓度 |
c | —— | 光降解后亚甲基蓝溶液的浓度 |
k | —— | 光降解速率常数 |
c 0 | —— | 光降解前亚甲基蓝溶液的浓度 |
c | —— | 光降解后亚甲基蓝溶液的浓度 |
k | —— | 光降解速率常数 |
1 | ZENG P , LIU Z , HU Z , et al . TiO2 nanotubular arrays loaded with Ni(OH)2: naked-eye visible photoswitchable color change induced by oxidative energy storage[J]. RSC Advances, 2013, 3 (45): 22853-22856. |
2 | ZHAO B , JIANG S , SU C , et al . A 3D porous architecture composed of TiO2 nanotubes connected with a carbon nanofiber matrix for fast energy storage[J]. Journal of Materials Chemistry A, 2013, 1 (39): 12310-12320. |
3 | DENG D , KIM M G, LEE J Y, et al . Green energy storage materials: nanostructured TiO2 and Sn-based anodes for lithium-ion batteries[J]. Energy & Environmental Science, 2009, 2(8): 818-837. |
4 | LEE E J, NAM I, YI J , et al . Nanoporous hexagonal TiO2 superstructure as a multifunctional material for energy conversion and storage[J]. Journal of Materials Chemistry A, 2015, 3 (7):3500-3510. |
5 | KIM M S, LEE T W, PARK J H . Controlled TiO2 nanotube arrays as an active material for high power energy-storage devices[J]. Journal of the Electrochemical Society, 2009, 156 (7): A584-A588. |
6 | ZHANG W , LIU Y , ZHOU D , et al . Photocatalytic activity of Ag nanoparticle-dispersed N-TiO2 nanofilms prepared by magnetron sputtering[J]. RSC Advances, 2015, 5 (70): 57155-57163. |
7 | MA D, YAN Y , JI H , et al . Photocatalytic activation of pyridine for addition reactions: an unconventional reaction feature between a photo-induced hole and electron on TiO2 [J]. Chemical Communications, 2015, 51(98):17451-17454. |
8 | NAKATO Y , AKANUMA H , SHIMIZU J , et al . Photo-oxidation reaction of water on an n-TiO2 electrode. Improvement in efficiency through formation of surface micropores by photo-etching in H2SO4 [J]. Journal of Electroanalytical Chemistry, 1995, 396(1/2): 35-39. |
9 | NAKATO Y , TSUMURA A , TSUBOMURA H . Photo- and electroluminescence spectra from an n-titanium dioxide semiconductor electrode as related to the intermediates of the photooxidation reaction of water[J]. The Journal of Physical Chemistry, 1983, 87 (13): 2402-2405. |
10 | KRAEUTLER B , BARD A J . Photoelectrosynthesisof ethane from acetate ion at an n-type titanium dioxide electrode. The photo-Kolbe reaction[J]. Journal of the American Chemical Society, 1977, 99 (23): 7729-7731. |
11 | GUO G , YU B , YU P , et al . Synthesis and photocatalytic applications of Ag/TiO2-nanotubes[J]. Talanta, 2009, 79 (3): 570-575. |
12 | HUANG L , PENG F , WANG H , et al . Controlled synthesis of octahedral Cu2O on TiO2 nanotube arrays by electrochemical deposition[J]. Materials Chemistry and Physics, 2011, 130 (3): 316-322. |
13 | AMIN S A , PAZOUKI M , HOSSEINNIA A . Synthesis of TiO2-Ag nanocomposite with sol-gel method and investigation of its antibacterial activity against E. coli [J]. Powder Technology, 2009, 196 (3): 241-245. |
14 | YAN J , SONG H , YANG S , et al . Preparation and electrochemical properties of composites of carbon nanotubes loaded with Ag and TiO2 nanoparticle for use as anode material in lithium-ion batteries[J]. Electrochimica Acta, 2008, 53 (22): 6351-6355. |
15 | YOO J E, LEE K, SCHMUKI P . Dewetted Au films form a highly active photocatalytic system on TiO2 nanotube-stumps[J]. Electrochemistry Communications, 2013, 34: 351-355. |
16 | ENACHI M , GUIX M , BRANISTE T , et al . Photocatalytic properties of TiO2 nanotubes doped with Ag, Au and Pt or covered by Ag, Au and Pt nanodots[J]. Surface Engineering and Applied Electrochemistry, 2015, 51(1): 3-8. |
17 | XIAO F . An efficient layer-by-layer self-assembly of metal-TiO2 nanoring/nanotube heterostructures, M/T-NRNT (M= Au, Ag, Pt), for versatile catalytic applications[J]. Chemical Communications, 2012, 48 (52): 6538-6540. |
18 | ISMAIL A A , BAHNEMANN D W , BANNAT I , et al . Gold nanoparticles on mesoporous interparticle networks of titanium dioxide nanocrystals for enhanced photonic efficiencies[J]. The Journal of Physical Chemistry C, 2009, 113 (17): 7429-7435. |
19 | ANDERSON O , OTTERMANN C R , KUSCHNEREIT R , et al . Density and Young’s modulus of thin TiO2 films[J]. Fresenius'Journal of Analytical Chemistry, 1997, 358 (1): 315-318. |
20 | YANG F Q . Diffusion-induced stress in inhomogeneous materials: concentration-dependent elastic modulus[J]. Science China Physics,Mechanics and Astronomy, 2012, 55 (6): 955-962. |
21 | HASHIMOTO K , IRIE H , FUJISHIMA A . TiO2 photocatalysis: a historical overview and future prospects[J]. Japanese Journal of Applied Physics, 2005, 44: 8269-8285. |
22 | ZHOU D Y , LIANG W , ZHANG W G , et al . Well-aligned Au/TiO2 nanorods by magnetron sputtering with enhanced photocatalytic properties[J]. Journal of Nanoscience and Nanotechnology, 2018, 18 (6) :4397-4402. |
23 | MIYAUCHI M , IKEZAWA A , TOBIMATSU H , et al . Zeta potential and photocatalytic activity of nitrogen doped TiO2 thin films[J]. Chemistry Chemical Physics, 2004, 6 (4):865-870. |
24 | HUANG Q , GAO T , NIU F , et al . Preparation and enhanced visible-light driven photocatalytic properties of Au-loaded TiO2 nanotube arrays[J]. Superlattices and Microstructures, 2014, 75: 890-900. |
25 | LI Y , YU H , ZHANG C , et al . Enhancement of photoelectrochemical response by Au modified in TiO2 nanorods[J]. International Journal of Hydrogen Energy, 2013, 38 (29): 13023-13030. |
26 | ZHOU D , LIU Y , ZHANG W , et al . Au-TiO2 nanofilms for enhanced photocatalytic activity[J]. Thin Solid Films, 2017, 636:490-498. |
27 | BAI Y , WANG P Q , LIU J Y , et al . Enhanced photocatalytic performance of direct Z-scheme BiOCl-gC3N4 photocatalysts[J]. RSC Advances, 2014, 4 (37) :19456-19461. |
28 | LI F B , LI X Z . The enhancement of photodegradation efficiency using Pt-TiO2 catalyst[J]. Chemosphere, 2002, 48 (10):1103-1111. |
29 | LU M . Photocatalysts and water purification: from fundamentals to recent applications[M]. John Wiley & Sons, 2013. |
30 | CHEN Y , TANG Y , LUO S , et al . TiO2 nanotube arrays co-loaded with Au nanoparticles and reduced graphene oxide: facile synthesis and promising photocatalytic application[J]. Journal of Alloys and Compounds, 2013, 578:242-248. |
31 | KAMAT P V , FLUMIANI M , DAWSON A . Metal-metal and metal-semiconductor composite nanoclusters[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 202 (2):269-279. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[6] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[7] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[8] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[9] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[10] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[11] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[12] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[13] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
[14] | XIANG Yang, HUANG Xun, WEI Zidong. Recent progresses in the activity and selectivity improvement of electrocatalytic organic synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4005-4014. |
[15] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 535
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 286
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |