1 |
LAI Y , VESER G .The nature of the selective species in Fe-HZSM-5 for non-oxidative methane dehydroaromatization[J]. Catalysis Science & Technology, 2016(6): 5440-5452.
|
2 |
能源供需趋势[J]. 中外能源, 2017, 3(22): 101-102.
|
|
Energy supply and demand trends[J]. Sino-Global Energy, 2017, 3(22): 101-102.
|
3 |
WANG L S , TAO L X , XIE M S , et al . Dehydrogenation and aromatization of methane under non-oxidizing conditions[J]. Catalysis Letters, 1993(21): 35-41.
|
4 |
CHENG X , YAN P , ZHANG X Z , et al . Enhanced methane dehydroaromatization in the presence of CO2 over Fe- and Mg-modified Mo/ZSM-5[J]. Molecular Catalysis, 2017(437): 114-120.
|
5 |
胥月兵, 陆江银, 王吉德, 等 . Mo基分子筛催化剂及甲烷无氧芳构化[J]. 化学进展, 2011, 23(1): 90-106.
|
|
XU Y B , LU J Y , WANG J D , et al . Mo based zeolite catalysts and oxygen free methane aromatization[J]. Progress in Chemistry, 2011, 23(1): 90-106.
|
6 |
MA S Q, GUO X G , ZHAO L X , et al . Recent progress in methane dehydroaromatization:from laboratory curiosities to promising technology[J]. Journal of Energy Chemistry, 2013, 22(1): 1-20.
|
7 |
MARIA B , DANIELA M , FRANCE S , et al . A study of the nature, strength, and accessibility of acid sites of H-MCM-22 zeolite[J]. Journal of Physical Chemistry C, 2008, 112(24): 9023-9033.
|
8 |
CHU N B , WANG J Q , ZHANG Y , et al . Nestlike hollow hierarchical MCM-22 microspheres: synthesis and exceptional catalytic properties[J]. Chemistry of Materials, 2010, 22(9): 2757-2763.
|
9 |
YIN X Y , CHU N B , YANG J H , et al . Synthesis of the nanosized MCM-22 zeolite and its catalytic performance in methane dehydro-aromatization reaction[J]. Catalysis Communication, 2014, 43: 218-222.
|
10 |
SHU Y Y , OHNISHI R , ICHIKAWA M , et al . Stable and selective dehydrocondensation of methane towards benzene on modified Mo/HMCM-22 catalyst by the dealumination treatment[J]. Catalysis Letters, 2002, 81(1/2): 9-17.
|
11 |
HU J , WU S , LI Z F , et al . Nano-MoO3-modified MCM-22 for methane dehydroaromatization[J]. Applied Organometallic Chemistry, 2015, 29(9): 638-645.
|
12 |
TIAN H F , ZHANG Z Z , CHANG H , et al . Catalytic performance of imidazole modified HZSM-5 for methanol to aromatics reaction[J]. Journal of Energy Chemistry, 2017, 26(3): 574-583.
|
13 |
ZHANG G Q , BAI T , CHEN T F , et al . Conversion of methanol to light aromatics on Zn-modified nano-HZSM-5 zeolite catalysts[J]. Industrial & Engineering Chemistry Research, 2014, 53(39): 14932-14940.
|
14 |
STEPHEN L L , ANTHONY S F , GORDON J K , et al . Zeolite MCM-49: a three-dimensional MCM-22 analogue synthesized by in situ crystallization[J]. Journal of Physical Chemistry, 1996, 100(9): 3788-3798.
|
15 |
WIESLAW J R , JIRI C . Two dimensional zeolites: dream or reality?[J]. Catalysis Science &Technology, 2011(1): 43-53.
|
16 |
CORMA A , CORELL C , FORNES V , et al . Infrared spectroscopy, thermoprogrammed desorption, and nuclear magnetic resonance study of the acidity, structure, and stability of zeolite MCM-22[J]. Zeolites, 1995, 15(7): 576-582.
|
17 |
CORMA A , CORELL C , PARIENTE J P . Synthesis and characterization of the MCM-22 zeolite[J]. Zeolites, 1995, 15(1): 2-8.
|
18 |
SCHEINER S , YI M Y . Proton transfer properties of imidazole[J]. Journal of Physical Chemistry, 1996, 100: 9235-9241.
|
19 |
RICHARD W B , YOUNG H K , ANNE H , et al . Structure and density of Mo and acid sites in Mo-exchanged H-ZSM5 catalysts for nonoxidative methane conversion[J].Journal of Physical Chemistry B, 1999, 103(28): 5787-5796.
|
20 |
杨平, 辛靖, 李明丰, 等 . 负载Mo、W氧化物对Y型分子筛结构及酸性的影响[J]. 石油学报, 2011, 27(5): 668-673.
|
|
YANG P , XIN J , LI M F , et al . Effects of molybdenum/tungsten oxides loading on the structure and acidity of the zeolites[J]. Acta Petrolei Sinica, 2011, 27(5): 668-673.
|
21 |
SHEILA G F , FATIMA M Z , LUCIA R R , et al . Influence of support acidity of NiMoS catalysts in the activity for hydrogenation and hydrocracking of tetralin[J]. Applied Catalysis A: General, 2010, 384(1/2): 51-57.
|
22 |
ARRIBAS M A , MARTINEZ A . The influence of zeolite acidity for the coupled hydrogenation and ring opening of 1-methylnaphthalene on Pt_USY catalysts[J]. Applied Catalysis A: General, 2002, 230(1/2): 203-217.
|
23 |
ARNOLDY P , JONGE J C M D , MOULIJN J A . Temperature-programmed reduction of MoO3 and MoO2 [J]. Journal of Physical Chemistry, 1985, 89(21): 4517-4526.
|
24 |
MA D, SHU Y Y , BAO X H , et al . Methane dehydroaromatization under nonoxidative conditions over Mo/HZSM-5 catalysts: EPR study of the Mo species on/in the HZSM-5 zeolite[J]. Journal of Catalysis, 2000, 189(2): 314-325.
|
25 |
刘红梅, 徐奕德 . 甲烷无氧芳构化反应催化剂Mo/HZSM-5的H2-TPR研究[J].催化学报, 2006, 27(4): 319-323.
|
|
LIU H M , XU Y D . H2-TPR study on Mo/HZSM-5 catalyst for CH4 dehydroaromatization[J]. Chinese Journal of Catalysis, 2006, 27(4): 319-323.
|
26 |
RAVISHANKAR R , BHATTACHARYA D , JACOB N E , et al . Characterization and catalytic properties of zeolite MCM-22[J]. Microporous Materials, 1995(4): 83-93.
|
27 |
ZHANG H Y , SHAO S S , XIAO R , et al . Characterization of coke deposition in the catalytic fast pyrolysis of biomass derivates[J]. Energy & Fuels, 2014, 28(1): 52-57.
|
28 |
LIU H M , SU L L , WANG H X , et al . The chemical nature of carbonaceous deposits and their role in methane dehydroaromatization on Mo/MCM-22 catalysts[J]. Applied Catalysis A: General, 2002, 236(1/2): 263-280.
|
29 |
MA D, WANG D Z , SU L L , et al . Carbonaceous deposition on Mo/HMCM-22 catalysts for methane aromatization: a TP technique investigation[J]. Journal of Catalysis, 2002, 208(2): 260-269.
|