Chemical Industry and Engineering Progree ›› 2015, Vol. 34 ›› Issue (3): 774-783.DOI: 10.16085/j.issn.1000-6613.2015.03.029
Previous Articles Next Articles
NONG Jiejing, ZHAO Wenbo, QIN Xianye, LIU Biao, ZHANG Zheng
Received:
2014-07-28
Revised:
2014-09-12
Online:
2015-03-05
Published:
2015-03-05
农洁静, 赵文波, 覃显业, 刘彪, 张政
通讯作者:
赵文波,博士,副教授。E-mail:wenshuixing@126.com。
作者简介:
农洁静(1990-),女,硕士研究生,从事金属有机配位聚合物/沸石分子筛复合材料的制备及应用研究。E-mail:1028167740@qq.com。
基金资助:
清华大学化学工程联合国家重点实验室开放基金(SKL-CHE-12A03)、国家青年自然科学基金(21306071)及云南省应用基础研究项目(2014FB118)
CLC Number:
NONG Jiejing, ZHAO Wenbo, QIN Xianye, LIU Biao, ZHANG Zheng. Recent progress in the study of core-shell-structured materials with metal organic frameworks (MOFs) as shell[J]. Chemical Industry and Engineering Progree, 2015, 34(3): 774-783.
农洁静, 赵文波, 覃显业, 刘彪, 张政. 金属有机骨架(MOFs)为壳的核壳结构材料研究进展[J]. 化工进展, 2015, 34(3): 774-783.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2015.03.029
[1] Lauhon L J, Gudiksen M S, Wang D, et al.Epitaxial core-shell and core-multishell nanowire heterostructures[J].Nature, 2002, 420(6911):57-61.[2] Sun X, Li Y.Colloida l carbon spheres and their core/shell structures with noble-metal nanoparticles[J].Angewandte Chemie International Editin, 2004, 43(5):597-601.[3] Cao Y, Jin R, Mirkin C A.DNA-modified core-shell Ag/Au nanoparticles[J].Journal of the American Chemical Society, 2001, 123(32):7961-7962.[4] Deng Y, Qi D, Deng C, et al.Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins[J].Journal of the American Chemical Society, 2007, 130(1):28-29.[5] Li J J, Wang Y A, Guo W, et al.Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction[J].Journal of the American Chemical Society, 2003, 125(41):12567-12575.[6] Wang Z, Liu Y, Jiang J G, et al.Synthesis of ZSM-5 zeolite hollow spheres with a core/shell structure[J].Journal of Materials Chemistry, 2010, 20(45):10193-10199.[7] Bouizi Y, Rouleau L, Valtchev V P.Factors controlling the formation of core-shell zeolite-zeolite composites[J].Chemistry of Materials, 2006, 18(20):4959-4966.[8] Nie R, Lei H, Pan S, et al.Core-shell structured CuO-ZnO@ H-ZSM-5 catalysts for CO hydrogenation to dimethyl ether[J].Fuel, 2012, 96:419-425.[9] Ke F, Qiu L G, Yuan Y P, et al.Fe3O4@MOF core-shell magnetic microspheres with a designable metal-organic framework shell[J].Journal of Materials Chemistry, 2012, 22(19):9497-9500.[10] Hwang Y K, Hong D Y, Chang J S, et al.Amine grafting on coordinatively unsaturated metal centers of MOFs:Consequences for catalysis and metal encapsulation[J].Angewandte Chemie International Edition, 2008, 47(22):4144-4148.[11] Phan N T S, Le K K A, Phan T D.MOF-5 as an efficient heterogeneous catalyst for friedel-crafts alkylation reactions[J].Applied Catalysis A:General, 2010, 382(2):246-253.[12] Zhao Z, Li Z, Lin Y.Adsorption and diffusion of carbon dioxide on metal-organic framework (MOF-5)[J].Industrial & Engineering Chemistry Research, 2009, 48(22):10015-10020.[13] Gassensmith J J, Furukawa H, Smaldone R A, et al.Strong and reversible binding of carbon dioxide in a green metal-organic framework[J].Journal of the American Chemical Society, 2011, 133(39):15312-15315.[14] Dybtsev D N, Chun H, Yoon S H, et al.Microporous manganese formate:A simple metal-organic porous material with high framework stability and highly selective gas sorption properties[J].Journal of the American Chemical Society, 2004, 126(1):32-33.[15] Liédana N, Galve A, Rubio C S, et al.CaF@ZIF-8:One-step encapsulation of caffeine in MOF[J].ACS Applied Materials & Interfaces, 2012, 4(9):5016-5021.[16] Sun C Y, Qin C, Wang C G, et al.Chiral nanoporous metal-organic frameworks with high porosity as materials for drug delivery[J].Advanced Materials, 2011, 23(47):5629-5632.[17] Yavuz C T, Mayo J, William W Y, et al.Low-field magnetic separation of monodisperse Fe3O4 nanocrystals[J].Science, 2006, 314(5801):964-967.[18] Taberna P L, Mitra S, Poizot P, et al.High rate capabilities Fe3O4-Based Cu nano-architectured electrodes for lithium-ion battery applications[J].Nature materials, 2006, 5(7):567-573.[19] Ueda K, Tabata H, Kawai T.Magnetic and electric properties of transition-metal-doped ZnO films[J].Applied Physics Letters, 2001, 79(7):988-990.[20] Yang L Y, Dong S Y, Sun J H, et al.Microwave-assisted preparation, characterization and photocatalytic properties of a dumbbell-shaped ZnO photocatalyst[J].Journal of Hazardous Materials, 2010, 179(1):438-443.[21] Faustini M, Kim J, Jeong G Y, et al.Microfluidic approach toward continuous and ultrafast synthesis of metal-organic framework crystals and hetero structures in confined microdroplets[J].Journal of the American Chemical Society, 2013, 135(39):14619-14626.[22] Sugikawa K, Furukawa Y, Sada K.Sers-active metal-organic frameworks embedding gold nanorods[J].Chemistry of Materials, 2011, 23(13):3132-3134.[23] Wang J, Munir A, Li Z, et al.Aptamer-au nps conjugates-enhanced spr sensing for the ultrasensitive sandwich immunoassay[J].Biosensors and Bioelectronics, 2009, 25(1):124-129.[24] Peng H, Stich M I, Yu J, et al.Luminescent europium (Ⅲ) nanoparticles for sensing and imaging of temperature in the physiological range[J].Advanced Materials, 2010, 22(6):716-719.[25] Jain P K, Huang X, El Sayed I H, et al.Noble metals on the nanoscale:Optical and photothermal properties and some applications in imaging, sensing, biology, and medicine[J].Accounts of Chemical Research, 2008, 41(12):1578-1586.[26] Chen W T, Yang T T, Hsu Y J.Au-CdS core-shell nanocrystals with controllable shell thickness and photoinduced charge separation property[J].Chemistry of Materials, 2008, 20(23):7204-7206.[27] He L, Liu Y, Liu J, et al.Core-shell noble-metal@metal-organic-framework nanoparticles with highly selective sensing property[J].Angewandte Chemie International Edition, 2013, 52(13):3741-3745.[28] Kuo C-H, Tang Y, Chou L-Y, et al.Yolk-shell nanocrystal@ZIF-8 nanostructures for gas-phase heterogeneous catalysis with selectivity control[J].Journal of the American Chemical Society, 2012, 134(35):14345-14348.[29] Liu N, Yao Y, Cha J J, et al.Functionalization of silicon nanowire surfaces with metal-organic frameworks[J].Nano Research, 2012, 5(2):109-116.[30] Sorribas S, Zornoza B, Téllez C, et al.Ordered mesoporous silica-(ZIF-8) core-shell spheres[J].Chemical Communications, 2012, 48(75):9388-9390.[31] Burrows A D.Mixed-component metal-organic frameworks (MC-MOFs):Enhancing functionality through solid solution formation and surface modifications[J].Cryst.Eng.Comm., 2011, 13(11):3623-3642.[32] Wei Y, Han S, Walker D A, et al.Nanoparticle core/shell architectures within MOF crystals synthesized by reaction diffusion[J].Angew.Chem.Int.Ed.Engl., 2012, 51(30):7435-7439.[33] Zhao Wenru, Zhang Lingxia, Chen Hangrong, et al.Fabrication of uniform magnetic nanocomposite spheres with a magnetic core/mesoporous silica shell structure[J].Journal of the American Chemical Society, 2005, 127(25):8916-8917.[34] Zhang C F, Qiu L G, Ke F, et al.A novel magnetic recyclable photocatalyst based on a core-shell metal-organic framework Fe3O4@MIL-100(Fe) for the decolorization of methylene blue dye[J].Journal of Materials Chemistry A, 2013, 1(45):14329-14334.[35] Silvestre M E, Franzreb M, Weidler P G, et al.Magnetic cores with porous coatings:Growth of metal-organic frameworks on particles using liquid phase epitaxy[J].Advanced Functional Materials, 2013, 23(9):1210-1213.[36] Zhang Y F, Qiu L G, Yuan Y P, et al.Magnetic Fe3O4@C/Cu and Fe3O4@CuO core-shell composites constructed from mof-based materials and their photocatalytic properties under visible light[J].Applied Catalysis B, Environmental, 2014, 144:863-869.[37] Zhang Y, Xia C.Magnetic hydroxyapatite-encapsulated γ-Fe2O3 nanoparticles functionalized with basic ionic liquids for aqueous knoevenagel condensation[J].Applied Catalysis A:General, 2009, 366(1):141-147.[38] Martins L, Hölderich W, Hammer P, et al.Preparation of different basic si-mcm-41 catalysts and application in the knoevenagel and claisen-schmidt condensation reactions[J].Journal of Catalysis, 2010, 271(2):220-227.[39] Parida K M, Mallick S, Sahoo P C, et al.A Facile method for synthesis of amine-functionalized mesoporous zirconia and its catalytic evaluation in knoevenagel condensation[J].Applied Catalysis A:General, 2010, 381(1-2):226-232.[40] Yang P, Yan H, Mao S, et al.Controlled growth of zno nanowires and their optical properties[J].Advanced Functional Materials, 2002, 12(5):323-331.[41] Choi S W, Park J Y, Kim S S.Synthesis of SnO2-ZnO core-shell nanofibers via a novel two-step process and their gas sensing properties[J].Nanotechnology, 2009, 20(46):465603.[42] Kong X Y, Ding Y, Wang Z L.Metal-semiconductor Zn-ZnO core-shell nanobelts and nanotubes[J].The Journal of Physical Chemistry B, 2003, 108(2):570-574.[43] Zhan W W, Kuang Q, Zhou J Z, et al.Semiconductor@metal-organic framework core-shell heterostructures:A case of ZnO@ZIF-8 nanorods with selective photoelectrochemical response[J].Journal of the American Chemical Society, 2013, 135(5):1926-1933.[44] Muller M, Hermes S, Kahler K, et al.Loading of MOF-5 with Cu and ZnO nanoparticles by gas-phase infiltration with organometallic precursors:Properties of Cu/ZnO@MOF-5 as catalyst for methanol synthesis[J].Chemistry of Materials, 2008, 20(14):4576-4587.[45] Ahmed A, Forster M, Clowes R, et al.Silica SOS@HKUST-1 composite microspheres as easily packed stationary phases for fast separation[J].Journal of Materials Chemistry A, 2013, 1(10):3276-3286.[46] Fu Y Y, Yang C X, Yan X P.Fabrication of ZIF-8@SiO2 core-shell microspheres as the stationary phase for high-performance liquid chromatography[J].Chemistry -A European Journal, 2013, 19(40):13484-13491.[47] Ma Y, Qi L, Ma J, et al.Large-pore mesoporous silica spheres:Synthesis and application in HPLC[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2003, 229(1):1-8.[48] Fenner D, Biegelsen D, Bringans R.Silicon surface passivation by hydrogen termination:A comparative study of preparation methods[J].Journal of Applied Physics, 1989, 66(1):419-424.[49] Faria A M, Magalhâes D R, Collins K E, et al.Characterization of zirconized silica supports for HPLC[J].Analytica Chimica Acta, 2005, 550(1):137-143.[50] Koh K, Wong-Foy A G, Matzger A J.MOF@MOF:Microporous core-shell architectures[J].Chemical Communications, 2009, 41:6162-6164.[51] Gadzikwa T, Farha O K, Malliakas C D, et al.Selective bifunctional modification of a non-catenated metal-organic framework material via "click" chemistry[J].Journal of the American Chemical Society, 2009, 131(38):13613-13615.[52] Shekhah O, Hirai K, Wang H, et al.MOF-on-MOF heteroepitaxy:Perfectly oriented [Zn2(NDC)2(DaBCO)] N grown on [Cu2(NDC)2 (DaBCO)] N thin films[J].Dalton Transactions, 2011, 40(18):4954-4958.[53] Li T, Sullivan J E, Rosi N L.Design and preparation of a core-shell metal-organic framework for selective CO2 capture[J].Journal of the American Chemical Society, 2013, 135(27):9984-9987.[54] Song X, Kim T K, Kim H, et al.Post-synthetic modifications of framework metal ions in isostructural metal-organic frameworks:Core-shell heterostructures via selective transmetalations[J].Chemistry of Materials, 2012, 24(15):3065-3073.[55] Cubillas P, Anderson M W, Attfield M P.Influence of isomorphous substituting cobalt ions on the crystal growth of the MOF-5 framework determined by atomic force microscopy of growing core-shell crystals[J].Crystal Growth & Design, 2013, 13(10):4526-4532.[56] Lee H J, Cho W, Oh M.Advanced fabrication of metal-organic frameworks:Template-directed formation of polystyrene@ZIF-8 core-shell and hollow ZIF-8 microspheres[J].Chemical Communications, 2012, 48(2):221-223.[57] Tran U P N, Le K K A, Phan N T S.Expanding applications of metal-organic frameworks:Zeolite imidazolate framework ZIF-8 as an efficient heterogeneous catalyst for the knoevenagel reaction[J].ACS Catalysis, 2011, 1(2):120-127.[58] Lu G, Hupp J T.Metal-organic frameworks as sensors:A ZIF-8 based Fabry-Pérot device as a selective sensor for chemical vapors and gases[J].Journal of the American Chemical Society, 2010, 132(23):7832-7833. |
[1] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
[2] | HE Meijin. Application and development trend of molecular management in separation technology in petrochemical field [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 260-266. |
[3] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[4] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[5] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[6] | HU Xi, WANG Mingshan, LI Enzhi, HUANG Siming, CHEN Junchen, GUO Bingshu, YU Bo, MA Zhiyuan, LI Xing. Research progress on preparation and sodium storage properties of tungsten disulfide composites [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 344-355. |
[7] | CUI Shoucheng, XU Hongbo, PENG Nan. Simulation analysis of two MOFs materials for O2/He adsorption separation [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 382-390. |
[8] | CHEN Chongming, CHEN Qiu, GONG Yunqian, CHE Kai, YU Jinxing, SUN Nannan. Research progresses on zeolite-based CO2 adsorbents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 411-419. |
[9] | LI Shilin, HU Jingze, WANG Yilin, WANG Qingji, SHAO Lei. Research progress in separation and extraction of high value components by electrodialysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 420-429. |
[10] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Research progress on functionalization strategies of covalent organic frame materials and its adsorption properties for Hg(Ⅱ) and Cr(Ⅵ) [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 461-478. |
[11] | GU Yongzheng, ZHANG Yongsheng. Dynamic behavior and kinetic model of Hg0 adsorption by HBr-modified fly ash [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 498-509. |
[12] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[13] | LIAO Zhixin, LUO Tao, WANG Hong, KONG Jiajun, SHEN Haiping, GUAN Cuishi, WANG Cuihong, SHE Yucheng. Application and progress of solvent deasphalting technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4573-4586. |
[14] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[15] | YANG Ying, HOU Haojie, HUANG Rui, CUI Yu, WANG Bing, LIU Jian, BAO Weiren, CHANG Liping, WANG Jiancheng, HAN Lina. Coal tar phenol-based carbon nanosphere prepared by Stöber method for adsorption of CO2 [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5011-5018. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |