Chemical Industry and Engineering Progree ›› 2016, Vol. 35 ›› Issue (05): 1366-1376.DOI: 10.16085/j.issn.1000-6613.2016.05.016
• Energy processes and technology • Previous Articles Next Articles
HE Wenxiu, ZHANG Zhiliang, JI Jianbing
Received:
2015-09-25
Revised:
2015-12-31
Online:
2016-05-05
Published:
2016-05-05
何文修, 张智亮, 计建炳
通讯作者:
张智亮,博士,讲师,研究方向为生物质纳米材料、过程强化。E-mail zhangzl@zjut.edu.cn。
作者简介:
何文修(1990-),男,硕士研究生。
基金资助:
CLC Number:
HE Wenxiu, ZHANG Zhiliang, JI Jianbing. Research progress of rice husk utilization technologies[J]. Chemical Industry and Engineering Progree, 2016, 35(05): 1366-1376.
何文修, 张智亮, 计建炳. 稻壳生物质资源利用技术研究进展[J]. 化工进展, 2016, 35(05): 1366-1376.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2016.05.016
[1] 董丽辉. 稻壳中生物质及二氧化硅的提取工艺研究[D]: 哈尔滨: 东北农业大学, 2011. [2] 马晓宇. 生物质基二氧化硅的提取及在聚酯中的应用[D]. 长春: 吉林大学, 2012. [3] 王惠玲, 张洪起, 张永欣, 等. 利用稻壳制取白炭黑的工艺研究[J]. 无机盐工业, 2008, 40(9): 45-47. [4] 潘贤齐, 苏德仁, 周肇秋, 等. 生物质流化床气化中试实验研究[J]. 农业机械学报, 2014, 45(10): 175-179, 287. [5] 王立群, 陈兆生. 煤与生物质流化床水蒸气共气化[J]. 中南大学学报(自然科学版). 2014, 45(5): 1692-1698. [6] 贤建伟, 范晓旭, 韩中合, 等. 床料对生物质流化床气化影响的初步试验研究[J]. 可再生能源, 2011, 29(1): 45-48. [7] MAKWANA J P, JOSHI A K, ATHAWALE G, et al. Air gasification of rice husk in bubbling fluidized bed reactor with bed heating by conventional charcoal[J]. Bioresource Technology, 2015, 178: 45-52. [8] GE H J, GUO W J, SHEN L H, et al. Experimental investigation on biomass gasification using chemical looping in a batch reactor and a continuous dual reactor[J]. Chemical Engineering Journal, 2016, 286: 689-700. [9] 卢红伟, 刘耀鑫. 稻壳热解气化特性的试验研究[J]. 可再生能源, 2009, 27(2): 52-54. [10] SHEN Y F, ZHAO P T, SHAO Q F, et al. In situ catalytic conversion of tar using rice husk char/ash supported nickel-iron catalysts for biomass pyrolytic gasification combined with the mixing-simulation in fluidized-bed gasifier[J]. Applied Energy, 2015, 160: 808-819. [11] LI J, LIU J, LIAO S, et al. Hydrogen-rich gas production by air-steam gasification of rice husk using supported nano-NiO/γ-Al2O3 catalyst[J]. International Journal of Hydrogen Energy, 2010, 35(14): 7399-7404. [12] CHEN Z M, ZHANG L. Catalyst and process parameters for the gasification of rice husk with pure CO2 to produce CO[J]. Fuel Processing Technology, 2015, 133: 227-231. [13] ZHOU L Y, YANG H M, WU H, et al. Catalytic pyrolysis of rice husk by mixing with zinc oxide: characterization of bio-oil and its rheological behavior[J]. Fuel Processing Technology, 2013, 106: 385-391. [14] MEESUK S, CAO J P, SATO K, et al. The effects of temperature on product yields and composition of bio-oils in hydropyrolysis of rice husk using nickel-loaded brown coal char catalyst[J]. Journal of Analytical and Applied Pyrolysis, 2012, 94: 238-245. [15] NAQVI S R, UEMURA Y, YUSUP S B. Catalytic pyrolysis of paddy husk in a drop type pyrolyzer for bio-oil production: the role of temperature and catalyst[J]. Journal of Analytical and Applied Pyrolysis, 2014, 106: 57-62. [16] ABU BAKAR M S, TITILOYE J O. Catalytic pyrolysis of rice husk for bio-oil production[J].Journal of Analytical and Applied Pyrolysis, 2013, 103: 362-368. [17] ISA K M, DAUD S, HAMIDIN N, et al. Thermogravimetric analysis and the optimisation of bio-oil yield from fixed-bed pyrolysis of rice husk using response surface methodology (RSM)[J].Industrial Crops and Products, 2011, 33(2): 481-487. [18] 傅旭峰, 司顺勇, 刘张鹏. 生物质流化床热裂解参数对产物分布的影响研究[J]. 能源工程, 2014(1): 42-46. [19] ALVAREZ J, LOPEZ G, AMUTIO M, et al. Bio-oil production from rice husk fast pyrolysis in a conical spouted bed reactor[J]. Fuel, 2014, 128: 162-169. [20] HUANG H J, YUAN X Z, ZENG G M, et al. Thermochemical liquefaction of rice husk for bio-oil production with sub- and supercritical ethanol as solvent[J]. Journal of Analytical and Applied Pyrolysis, 2013, 102: 60-67. [21] LIU Y, YUAN X Z, HUANG H J, et al. Thermochemical liquefaction of rice husk for bio-oil production in mixed solvent (ethanol water)[J].Fuel Processing Technology, 2013, 112: 93-99. [22] SHI W, JIA J F, GAO Y H, et al. Influence of ultrasonic pretreatment on the yield of bio-oil prepared by thermo-chemical conversion of rice husk in hot-compressed water[J]. Bioresour Technol., 2013, 146: 355-362. [23] 王质斌, 王宇迪, 赖志彬, 等. 磷酸对微波催化裂解稻壳制备生物油性质的影响[J]. 农产品加工(学刊), 2012(8): 64-66, 75. [24] 姬登祥, 蔡腾跃, 艾宁, 等. 熔盐热裂解生物质制生物油[J]. 生物工程学报, 2011, 27(3): 475-481. [25] XU M Y, YIN P, LIU X G, et al. Utilization of rice husks modified by organomultiphosphonic acids as low cost biosorbents for enhanced adsorption of heavy metal ions[J]. Bioresource Technology, 2013, 149: 420-424. [26] LEE S M, ONG S T. Oxalic acid modified rice hull as a sorbent for methylene blue removal[J]. APCBEE Procedia, 2014, 9: 165-169. [27] WONG K K, LEE C K, LOW K S, et al. Removal of Cu and Pb by tartaric acid modified rice husk from aqueous solutions[J].Chemosphere, 2003, 50(1): 23-28. [28] AJMAL M, RAO R A K, ANWAR S, et al. Adsorption studies on rice husk: removal and recovery of Cd (Ⅱ) from wastewater[J]. Bioresource Technology, 2003, 86(2): 147-149. [29] KUMAR U, BANDYOPADHYAY M. Sorption of cadmium from aqueous solution using pretreated rice husk[J]. Bioresource Technology, 2006, 97(1): 104-109. [30] 夏天明, 王营茹, 范鹏程. 改性稻壳吸附亚甲基蓝模拟废水试验研究[J]. 工业水处理, 2013, 33(3): 47-50. [31] 张建柱, 商平, 刘涛利. 改性稻壳去除低浓度氨氮的研究[J]. 安徽农业科学, 2011, 39(1): 228-230, 260. [32] 龙逸云, 李金轩, 李小燕. 改性稻壳对废水中铀的吸附性能[J]. 济南大学学报(自然科学版), 2013, 27(4): 386-389. [33] 张文岺, 万昆, 余国贤, 等. 磷酸活化稻壳制备柴油脱硫吸附剂[J]. 石油学报(石油加工), 2010, 26(4): 588-593. [34] 刘文杰, 杨彤, 徐姣, 等. 凹凸棒石/脱硅稻壳炭复合材料吸附Pb2+、Cu2+、Ni2+的对比研究[J]. 化工新型材料, 2015, 43(5): 169-173. [35] 阮长青, 张丽萍, 鹿保鑫. 酸性稻壳炭作为油脂脱色剂的制备及脱色工艺的实验研究[J]. 牡丹江师范学院学报(自然科学版), 2000, 4(8): 13-16. [36] 廖景明, 肖军, 沈来宏, 等. 生物质活性炭吸附二氧化碳的性能研究[J]. 太阳能学报, 2013, 34(3): 382-387. [37] 李楠, 单保庆, 唐文忠, 等. 稻壳活性炭制备及其对磷的吸附[J]. 环境工程学报, 2013, 7(3): 1024-1028. [38] SOMASUNDARAM S, SEKAR K, GUPTA V K, et al. Synthesis and characterization of mesoporous activated carbon from rice husk for dsorption of glycine from alcohol-aqueous mixture[J]. Journal of Molecular Liquids, 2013, 177: 416-425. [39] KALDERIS D, KOUTOULAKIS D, PARASKEVA P, et al. Adsorption of polluting substances on activated carbons prepared from rice husk and sugarcane bagasse[J]. Chemical Engineering Journal, 2008, 144(1): 42-50. [40] FOO K Y, HAMEED B H. Utilization of rice husks as a feedstock for preparation of activated carbon by microwave induced KOH and K2CO3 activation[J]. Bioresource Technology, 2011, 102(20): 9814-9817. [41] 佘敏, 段钰锋, 朱纯, 等. CO2/H3PO4活化与NH4Br改性稻壳焦的脱汞性能实验研究[J]. 东南大学学报(自然科学版), 2014, 44(2): 321-327. [42] 王桐, 姚超, 刘文杰, 等. 直接合成法制备载银稻壳活性炭及其对 苯并噻吩的吸附[J]. 应用化工, 2014, 43(9): 1611-1615. [43] YANG N, ZHU S M, ZHANG D, et al. Synthesis and properties of magnetic Fe3O4 activated carbon nanocomposite particles for dye removal[J]. Materials Letters, 2008, 62(4): 645-647. [44] 鲁婷婷, 王婧雅, 叶长城, 等. 稻壳基活性炭负载纳米Fe3O4对水 体中罗丹明B的吸附[J]. 净水技术, 2015, 34(2): 61-66. [45] GUO Y P, ZHANG H, TAO N N, et al. Adsorption of malachite green and iodine on rice husk based porous carbon[J]. Materials Chemistry and Physics, 2003, 82(1): 107-115. [46] ALI I O, HASSAN A M, SHAABAN S M, et al. Synthesis and characterization of ZSM-5 zeolite from rice husk ash and their adsorption of Pb2+ onto unmodified and surfactant-modified zeolite[J]. Separation and Purification Technology, 2011, 83: 38-44. [47] HEMALATHA P, BHAGIYALAKSHMI M, GANESH M, et al. Role of ceria in CO2 adsorption on NaZSM-5 synthesized using rice husk ash[J]. Journal of Industrial and Engineering Chemistry, 2012, 18(1): 260-265. [48] CHENG Y, LU M, LI J S, et al. Synthesis of MCM-22 zeolite using rice husk as a silica source under varying-temperature conditions[J]. Journal of Colloid and Interface Science, 2012, 369(1): 388-394. [49] YUSOF A M, KEAT L K, IBRAHIM Z, et al. Kinetic and equilibrium studies of the removal of ammonium ions from aqueous solution by rice husk ash-synthesized zeolite Y and powdered and granulated forms of mordenite[J].Journal of Hazardous Materials, 2010, 174(1/2/3): 380-385. [50] GRISDANURAK N, CHIARAKORN S, WITTAYAKUN J. Utilization of mesoporous molecular sieves synthesized from natural source rice husk silica to chlorinated volatile organic compounds (CVOCs) adsorption[J]. Korean Journal of Chemical Engineering, 2003, 20(5): 950-955. [51] 任素霞. 稻壳资源的综合利用研究 [D]. 长春: 吉林大学, 2009. [52] 甘露, 刘厚凡, 高长华, 等. 稻壳联产纳米白炭黑与活性炭的研究[J]. 粮食与饲料工业, 2007(11): 7-9, 12. [53] 阮长青, 马军喜, 崔素萍, 等. 稻壳沉淀法制备白炭黑工艺的研究 [J]. 黑龙江八一农垦大学学报, 2005, 17(2): 63-66. [54] AN D, GUO Y, ZOU B, et al. A study on the consecutive preparation of silica powders and active carbon from rice husk ash[J]. Biomass and Bioenergy, 2011, 35: 1227-1234. [55] 丁开宇, 张彦军, 刘成梅, 等. 稻壳灰制备高纯度白炭黑联产水玻璃影响因素研究[J]. 中国粮油学报, 2009, 24(5): 1-6. [56] LI M, CHEN D Y, ZHU X F. Preparation of solid acid catalyst from rice husk char and its catalytic performance in esterification[J]. Chinese Journal of Catalysis, 2013, 34(9): 1674-1682. [57] LU C Y, WEY M Y, CHUANG K H. Catalytic treating of gas pollutants over cobalt catalyst supported on porous carbons derived from rice husk and carbon nanotube[J]. Applied Catalysis B: Environmental, 2009, 90(3): 652-661. [58] ZHANG X, LI Y X, LI G Y et al. Preparation of Fe/activated carbon directly from rice husk pyrolytic carbon and its application in catalytic hydroxylation of phenol[J]. RSC Advances, 2015, 5(7): 4984-4992. [59] 杨波, 王伟, 朱凯, 等. 纳米银复合介孔碳材料制备固定化猪胰脂 肪酶[J]. 生物加工过程, 2012, 10(3): 50-55. [60] KENNEDY L J, DAS K M, SEKARAN G. Integrated biological and catalytic oxidation of organics/inorganics in tannery wastewater by rice husk based mesoporous activated carbon-Bacillus sp. [J]. Carbon, 2004, 42(12/13): 2399-2407. [61] ADAM F, CHEW T S, ANDAS J. Liquid phase oxidation of acetophenone over rice husk silica vanadium catalyst[J]. Chinese Journal of Catalysis, 2012, 33(2/3): 518-522. [62] HINDRYAWATI N, MANIAM G P, KARIM M R, et al. Transesterification of used cooking oil over alkali metal (Li, Na, K) supported rice husk silica as potential solid base catalyst[J]. Engineering Science and Technology, an International Journal, 2014, 17(2): 95-103. [63] ARTKLA S, KIM W, CHOI W, et al. Highly enhanced photocatalytic degradation of tetramethylammonium on the hybrid catalyst of titania and MCM-41 obtained from rice husk silica[J]. Applied Catalysis B: Environmental, 2009, 91(1/2): 157-164. [64] 徐莉莉. 负载型过渡金属氧化物催化剂催化氧化NO的实验研究[D]. 哈尔滨: 哈尔滨工业大学, 2009. [65] MANSILLA H D, BAEZA J, URZUA S, et al. Acid-catalysed hydrolysis of rice hull: evaluation of furfural production[J]. Bioresource Technology, 1998, 66(3): 189-193. [66] SINGH A, DAS K, SHARMA D K. Production of xylose, furfural, fermentable sugars and ethanol from agricultural residues[J].Journal of Chemical Technology and Biotechnology, Chemical Technology, 1984, 34(2): 51-61. [67] 张烨, 王平, 余波, 等. 用玉米芯、稻壳混合原料生产糠醛的中试工艺研究[J]. 中南林业科技大学学报, 2011, 31(7): 160-164. [68] CHAREONLIMKUN A, CHAMPREDA V, SHOTIPRUK A, et al. Catalytic conversion of sugarcane bagasse, rice husk and corncob in the presence of TiO2, ZrO2 and mixed-oxide TiO2-ZrO2 under hot compressed water (HCW) condition[J]. Bioresource Technology, 2010, 101(11): 4179-4186. [69] REN S X, XU H Y, ZHU J L, et al. Furfural production from rice husk using sulfuric acid and a solid acid catalyst through a two-stage process[J]. Carbohydrate Research, 2012, 359: 1-6. [70] SANGARUNLERT W, PIUMSOMBOON P, NGAMPRASERTSITH S. Furfural production by acid hydrolysis and supercritical carbon dioxide extraction from rice husk[J]. Korean Journal of Chemical Engineering, 2007, 24(6): 936-941. [71] 阮榕生, 姚远, 王允圃, 等. 微波辅助定向裂解稻壳炼制糠醛及乙酸的研究[J]. 现代化工, 2013, 33(5): 66-68, 70. [72] 刘宝亮. 稻壳中木聚糖的提取和生物降解[D]. 哈尔滨: 东北林业大学, 2004. [73] 韩丹妮. 稻壳预处理及稻壳中木聚糖的提取工艺研究[D]. 长沙: 长沙理工大学, 2012. [74] NABARLATZ D, EBRINGEROVA A, MONTANE D. Autohydrolysis of agricultural by-products for the production of xylo-oligosaccharides[J]. Carbohydrate Polymers, 2007, 69(1): 20-28. [75] PARAJO J C, GARROTE G, CRUZ J M, et al. Production of xylooligosaccharides by autohydrolysis of lignocellulosic materials[J]. Trends in Food Science & Technology, 2004, 15(3/4): 115-120. [76] GONZALEZ-MUNOZ M J, DOMINGUEZ H, PARAJO J C. Depolymerization of xylan-derived products in an enzymatic membrane reactor[J]. Journal of Membrane Science, 2008, 320(1/2): 224-231. [77] 刘宝亮, 方桂珍. 从稻壳中提取木聚糖的研究[J]. 林产化学与工业, 2005, 25(s1): 121-124. [78] 王风玲, 熊素敏, 左秀凤. 稻壳酶解制备还原糖的研究[J]. 粮油加工, 2007(7): 110-112. [79] ZHANG H X, ZHAO X, DING X F, et al. A study on the consecutive preparation of d-xylose and pure superfine silica from rice husk[J]. Bioresource Technology, 2010, 101(4): 1263-1267. [80] LI Y, DING X F, GUO Y P, et al. A new method of comprehensive utilization of rice husk[J].Journal of Hazardous Materials, 2011, 186(2/3): 2151-2156. [81] VILA C, CAMPOS A R, CRISTOVÃO C, et al. Sustainable biocomposites based on autohydrolysis of lignocellulosic substrates[J]. Composites Science and Technology, 2008, 68(3/4): 944-952. [82] 石荣铭, 梁莉丽. 常温酸水解法从稻壳中提取木糖的研究[J]. 食品科技, 2007(12): 212-214. [83] DUTTA N, MUKHOPADHYAY A, DASGUPTA A K, et al. Improved production of reducing sugars from rice husk and rice straw using bacterial cellulase and xylanase activated with hydroxyapatite nanoparticles[J]. Bioresource Technology, 2014, 153: 269-277. [84] 张沛, 杨国辉, 魏丽娟, 等. 稻壳粉固态发酵生产蛋白饲料的工艺研究[J]. 中国饲料, 2015(8): 25-27, 38. [85] 刘雅琴, 刘天霞, 夏青柱. 混合菌发酵稻壳粉生产饲料蛋白的研究[J]. 畜牧与饲料科学, 2010(9): 19-21. [86] 罗学刚. 碳酸盐在稻壳挤压膨化加工中的应用研究[J].农业工程学报, 1998, 14(3): 235-239. [87] 崔凤珍, 崔少东. 膨化稻壳可作为蛋鸡饲料添充料[J]. 饲料与畜牧, 1992(2): 7-9. |
[1] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
[2] | WANG Shuaiqing, YANG Siwen, LI Na, SUN Zhanying, AN Haoran. Research progress on element doped biomass carbon materials for electrochemical energy storage [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4296-4306. |
[3] | WU Ya, ZHAO Dan, FANG Rongmiao, LI Jingyao, CHANG Nana, DU Chunbao, WANG Wenzhen, SHI Jun. Research progress on highly efficient demulsifiers for complex crude oil emulsions and their applications [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4398-4413. |
[4] | ZHENG Mengqi, WANG Chengye, WANG Yan, WANG Wei, YUAN Shoujun, HU Zhenhu, HE Chunhua, WANG Jie, MEI Hong. Application and prospect of algal-bacterial symbiosis technology in zero liquid discharge of industrial wastewater [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4424-4431. |
[5] | GUAN Hongling, YANG Hui, JING Hongquan, LIU Yuqiong, GU Shouyu, WANG Haobin, HOU Cuihong. Lignin-based controlled release materials and application in drug delivery and fertilizer controlled-release [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3695-3707. |
[6] | LU Yang, ZHOU Jinsong, ZHOU Qixin, WANG Tang, LIU Zhuang, LI Bohao, ZHOU Lingtao. Leaching mechanism of Hg-absorption products on CeO2/TiO2 sorbentsin syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3875-3883. |
[7] | YU Zhiqing, HUANG Wenbin, WANG Xiaohan, DENG Kaixin, WEI Qiang, ZHOU Yasong, JIANG Peng. B-doped Al2O3@C support for CoMo hydrodesulfurization catalyst and their hydrodesulfurization performance [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3550-3560. |
[8] | GONG Pengcheng, YAN Qun, CHEN Jinfu, WEN Junyu, SU Xiaojie. Properties and mechanism of eriochrome black T degradation by carbon nanotube-cobalt ferrite composites activated persulfate [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3572-3581. |
[9] | YU Dingyi, LI Yuanyuan, WANG Chenyu, JI Yongsheng. Preparation of lignin-based pH responsive hydrogel and its application in controlled drug release [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3138-3146. |
[10] | WU Fengzhen, LIU Zhiwei, XIE Wenjie, YOU Yating, LAI Rouqiong, CHEN Yandan, LIN Guanfeng, LU Beili. Preparation of biomass derived Fe/N co-doped porous carbon and its application for catalytic degradation of Rhodamine B via peroxymonosulfate activation [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3292-3301. |
[11] | ZHANG Wei, QIN Chuan, XIE Kang, ZHOU Yunhe, DONG Mengyao, LI Jie, TANG Yunhao, MA Ying, SONG Jian. Application and performance enhancement challenges of H2-SCR modified platinum-based catalysts for low-temperature denitrification [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2954-2962. |
[12] | MA Yuan, XIAO Qingyue, YUE Junrong, CUI Yanbin, LIU Jiao, XU Guangwen. CO xco-methanation over a Ni-based catalyst supported on CeO2-Al2O3 composite [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2421-2428. |
[13] | ZHANG Ning, WU Haibin, LI Yu, LI Jianfeng, CHENG Fangqin. Recent advances in preparation and application of floating photocatalysts in water treatment [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2475-2485. |
[14] | WANG Xue, XU Qiyong, ZHANG Chao. Hydrothermal carbonization of the lignocellulosic biomass and application of the hydro-char [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2536-2545. |
[15] | WANG Zhiwei, GUO Shuaihua, WU Mengge, CHEN Yan, ZHAO Junting, LI Hui, LEI Tingzhou. Recent advances on catalytic co-pyrolysis of biomass and plastic [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2655-2665. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |