Chemical Industry and Engineering Progress ›› 2017, Vol. 36 ›› Issue (07): 2621-2631.DOI: 10.16085/j.issn.1000-6613.2016-2144
Previous Articles Next Articles
KANG Shaoguo, LI Shupeng, FAN Yun
Received:
2016-11-21
Revised:
2017-02-11
Online:
2017-07-05
Published:
2017-07-05
康绍果, 李书鹏, 范云
通讯作者:
李书鹏,教授级高级工程师,从事环境修复(污染地块、河道底泥、矿山以及农田)技术研究开发及管理工作。
作者简介:
康绍果(1989-),男,硕士,工程师,从事污染地块(土壤及地下水)调查评估及修复治理技术研究开发及项目管理。E-mail:kangshaoguo@163.com。
基金资助:
CLC Number:
KANG Shaoguo, LI Shupeng, FAN Yun. Research status and development trend of in situ thermal treatment technologies for contaminated site[J]. Chemical Industry and Engineering Progress, 2017, 36(07): 2621-2631.
康绍果, 李书鹏, 范云. 污染地块原位加热处理技术研究现状与发展趋势[J]. 化工进展, 2017, 36(07): 2621-2631.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2016-2144
[1] 骆永明. 污染土壤修复技术研究现状与趋势[J]. 化学进展,2009,21(2/3):558-565. LUO Y M. Current research and development in soil remediation technologies[J]. Progress in Chemistry,2009,21(2/3):558-565. [2] 中华人民共和国国务院.土壤污染防治行动计划[EB/OL].[2016-11-01]. http://www.gov.cn/zhengce/content/2016-05/31/content_5078377.htm. State Council of China. The action plan for soil pollution prevention and control[EB/OL].[2016-11-01]. http://www.gov.cn/zhengce/content/2016-05/31/content_5078377.htm. [3] KINGSTON J L T,JOHNSON P C,KUEPER B H,et al. In situ thermal treatment of chlorinated solvent source zones[M]. KUEPER B H,STROO H F,VOGEL C M,WARD C H,editor. Chlorinated Solvent Source Zone Remediation. New York:Springer Science Business Media,2014:509-557. [4] U.S. Army Corps of Engineers. Design:in situ thermal remediation[R]. Washington:Department of the Army,2009. [5] SCHNAKENBURG P V. In situ thermal remediation of contaminated sites-a technique for the remediation of source zones[EB/OL].[2016-11-01] http://www.citychlor.eu/sites/default/files/thermal_treatment.pdf. [6] Office of Solid Waste and Emergency Response,Office of Superfund Remediation and Technology Innovation. In situ thermal treatment of chlorinated solvents:fundamentals and field applications[R]. Washington:U.S. Environmental Protection Agency,2004 [7] BAILEY W M,SCHNEIDER A. Enhanced fuel oil recovery using steam injection and dual phase vacuum extraction at a paper recycling facility in Dublin,Georgia[C]//1998 TAPPI International Environmental Conference and Exhibit. Atlanta:TAPPI Press,1998:745-746. [8] ROLAND U,BERGMANN S,HOLZER F,et al. Influence of in situ steam formation by radio frequency heating on thermodesorption of hydrocarbons from contaminated soil[J]. Environmental Science & Technology,2010,44(24):9502-9508. [9] HUON G,SIMPSON T,HOLZER F,et al. In situ radio-frequency heating for soil remediation at a former service station:case study and general aspects[J]. Chemical Engineering & Technology,2012,35(8):1534-1544. [10] KUNKEL A M,SEIBERT J J,ELLIOTT L J,et al. Remediation of elemental mercury using in situ thermal desorption(ISTD)[J]. Environmental Science & Technology,2006,40(7):2384-2389. [11] TSE K K C,LO S L,WANG J W H. Pilot study of in-situ thermal treatment for the remediation of pentachlorophenol-contaminated aquifers[J]. Environmental Science & Technology,2001,35(24):4910-4915. [12] 张红振,董璟琦,司绍诚,等. 中国环境修复产业发展现状与预测分析[J]. 环境保护,2016,44(17):50-53. ZHANG H Z,DONG J Q,SI S C,et al. State-of-the-art and forecast analysis of environmental restoration industry in China[J]. Environmental Protection,2016,44(17):50-53. [13] 缪周伟,吕树光,邱兆富,等. 原位热处理技术修复重质非水相液体污染场地研究进展[J]. 环境污染与防治,2012,34(8):63-68. MIAO Z H,LV S G,QIU Z F,et al. Progress of in situ thermal treatment technologies for DNAPLs contaminated site remediation[J]. Environmental Pollution and Control,2012,34(8):63-68. [14] HIESTER I U,MÜLLER I M,KOSCHITZKY H P,et al. Guidelines:in situ thermal treatment(ISTT)for source zone remediation of soil and groundwater[R]. Permoserstrabe:Centre of Competence for Soil,Groundwater and Site Revitalisation,2013:10-12. [15] JOHNSON P,DAHLEN P,KINGSTON J T,et al. State of practice overview:critical evaluation of state-of-the-art in situ thermal treatment technologies for DNAPL source zone treatment[R]. Alexandria:Environmental Security Technology Certification Program,2009:2-5. [16] LEBRO'N C A,PHELAN D,HERON G,et.al. Final report:dense non aqueous phase liquid(DNAPL)removal from fractured rock using thermal conductive heating(TCH)[R]. Alexandria:Environmental Security Technology Certification Program,2013:10-13. [17] KINGSTON J L T,DAHLEN P R,JOHNSON P C. State-of-the-practice review of in situ thermal technologies[J]. Ground Water Monitoring and Remediation,2010,30(4):64-72. [18] 中华人民共和国环境保护部. 污染场地修复技术目录(第一批)[EB/OL].[2016-12-10]. http://www.zhb.gov.cn/gkml/hbb/bgg/201411/t20141105_291150.htm. Ministry of Environmental Protection of the People's Republic of China. Remediation technology directory for Contaminated sites(the First)[EB/OL].[2016-12-10]. http://www.zhb.gov.cn/gkml/hbb/bgg/201411/t20141105_291150.htm. [19] HULING S G,PIVETZ B E. In-situ chemical oxidation[R]. Cincinnati:Office of Research and Development National Risk Management Research Laboratory,2006:1-6. [20] GAVASKAR A,BHARGAVA M,ANAVFAC Alternative Restoration Technology Team. Cost and performance report for persulfate treatability studies[R]. Columbus:NAVFAC Engineering Service Center,2008. [21] The Federal Remediation Technology Roundtable(FRTR). Ex situ thermal treatment(thermal desorption)[EB/OL].[2016-12-10]. https://frtr.gov/matrix2/section4/4-26.html. [22] The Federal Remediation Technology Roundtable(FRTR). In situ thermal treatment[EB/OL].[2016-12-10]. https://frtr.gov/matrix2/section4/4-9.html. [23] ALI S M,MELDAU R F. Current steam flood technology[J]. Journal of Petroleum Technology,1979,31:332-1342. [24] BETZ C,FARBER A,GREEN C M,et al. Removing volatile and semi-volatile contaminants from the unsaturated zone by injection of a steam/air-mixture[C]//6th International FZK/TNO Conference on Contaminated Soil(ConSoil 98). London:Thomas Telford Services LTD,1998:575-584. [25] HERON G,CARROLL S,NIELSEN S G. Full-scale removal of DNAPL constituents using steam-enhanced extraction and electrical resistance heating[J]. Ground Water Monitoring and Remediation,2005,25(4):92-107. [26] HODGES R A,FALTA R W. Vertical confinement of injected steam in the vadose zone using cold air injection[J]. Vadose Zone Journal,2008,7(2):732-740. [27] KASLUSKY S F,UDELL K S. A theoretical model of air and steam co-injection to prevent the downward migration of DNAPLs during steam-enhanced extraction[J]. Journal of Contaminant Hydrology,2002,55(3/4):213-232. [28] KASLUSKY S F,UDELL K S. Co-injection of air and steam for the prevention of the downward migration of DNAPLs during steam enhanced extraction:an experimental evaluation of optimum injection ratio predictions[J]. Journal of Contaminant Hydrology,2005,77(4):325-347. [29] PENG S,WANG N,CHEN J. Steam and air co-injection in removing residual TCE in unsaturated layered sandy porous media[J]. Journal of Contaminant Hydrology,2013,153:24-36. [30] WANG N,PENG S,CHEN J. Steam and air co-injection in removing TCE in 2D-sand box[J]. Environmental Science,2014,35(7):2785-2790. [31] VINEGAR H J,STEGMEIER G L. Low cost,self regulating heater for use in an in-situ thermal desorption soil remediation system:US6485232[P]. 2002-11-26. [32] VINEGAR H J,STEGMEIER G L. Heater element for use in an in-situ thermal desorption soil remediation system:US6632047[P]. 2003-10-14. [33] CONLEY D M,LONIE C M. Field scale implementation of in situ thermal desorption thermal well technology[M]//WICKRAMANAYAKE G D,GAVASKAR A R,eds. Physical and thermal technologies:remediation of chlorinated and recalcitrant compounds. Columbus:Battelle Press,2000:175-182. [34] CONLEY D M,HANSEN K S,STEGEMEIER G L,et al. In situ thermal desorption of refined petroleum hydrocarbons from saturated soil[M]//WICKRAMANAYAKE G D,GAVASKAR A R,eds. Physical and thermal technologies:remediation of chlorinated and recalcitrant compounds. Columbus:Battelle Press,2000:197-206. [35] Deep Green. Thermopile©:sustainable thermal desprption[EB/OL].[2016-11-01] http://www.deep-green.com/UK/Thermopile/technology.php. [36] 张景辉,刘朝辉,李野,等. 一种原位热强化组合土壤气相抽提技术治理污染土壤的装置:202591210U[P]. 2012-12-12. ZHANG J H,LIU C H,LI Y,et al. A device for contaminated soil treatment that uses in-situ thermally enhanced soil vapor extraction:202591210U[P]. 2012-12-12. [37] 张景辉,刘朝辉,李野,等一种原位热强化组合土壤气相抽提技术治理污染土壤的方法:102513347A[P]. 2012-06-27. ZHANG J H,LIU C H,LI Y,et al. A contaminated soil treatment method which uses in-situ thermally enhanced soil vapor extraction:102513347A[P]. 2012-06-27. [38] 卢宏玮,史斌,何理,等. 一种原位加热结合双相真空抽吸土壤修复装置和方法:201210536226.4[P].2013-04-03. LU H W,SHI B,HE L,et al. A soil remediation device and method by combining in-situ thermal treatment with dual phase vacuum extraction:201210536226.4[P]. 2013-04-03. [39] 罗启仕,朱杰,廖志强,等. 污染土壤气相抽提热传导强化高级氧化原位修复设施:202638859U[P]. 2013-01-02. LUO Q S,ZHU J,LIAO Z Q,et al. In-situ contaminated soil remediation facility which uses vapor extraction and thermal conduction enhanced advanced oxidation:202638859U[P]. 2013-01-02. [40] 罗启仕,朱杰,廖志强,等. 适用于氯苯污染土壤的强化气相抽提修复装置及其小试装置:202779154U[P]. 2013-03-13. LUO Q S,ZHU J,LIAO Z Q,et al. The enhanced soil vapor extraction device and experimental equipment which are suitable for chlorobenzene contaminated soil remediation:202779154U[P]. 2013-03-13. [41] 罗启仕,朱杰,刘小宁,等. 氯苯污染土壤强化气相抽提修复装置及其小试装置和用该装置处理氯苯污染土壤的方法:103447291A[P]. 2013-12-18. LUO Q S,ZHU J,LIU X N,et al. The enhanced soil vapor extraction device and experimental equipment which are suitable for chlorobenzene contaminated soil remediation and the method for chlorobenzene contaminated soil treatment with this device:103447291A[P]. 2013-12-18. [42] 廖晓勇,阎秀兰,李鹏. 一种污染场地原位热强化气相抽提修复集成装备及应用方法:103350104A[P]. 2013-10-16. LIAO X Y,YAN X L,LI P. An integrated contaminated sites remediation equipment and application method which employ in-situ thermal enhanced vopor extraction technology:103350104A[P]. 2013-10-16. [43] 廖志强. 土壤中挥发性有机物的气相抽提处理热强化技术研究[D]. 上海:华东理工大学,2013. LIAO Z Q. The research about remediation of volatile organic contaminant by thermal enhanced soil vapor extraction[D]. Shanghai:East China University of Science and Technology,2013. [44] 朱杰,罗启仕,李心倩. 热传导强化气相抽提处理苯系物污染土壤实验[J]. 环境化学,2013,32(8):1546-1553. ZHU J,LUO Q S,LI X Q. Thermodesorption of BTEX-contaminated soil using heat conduction[J]. Environmental Chemistry,2013,32(8):1546-1553. [45] 周昱,徐晓晶,保嶽,等. 电加热在土壤气相抽提(SVE)中的实验研究[J]. 科学技术与工程,2014,14(3):277-280. ZHOU Y,XU X J,BAO Y,et al. Experimental research for electric heating in soil vapor extraction(SVE)[J]. Science Technology and Engineering,2014,14(3):277-280. [46] HARVEY A H,GOVIER J P. Petroleum production method:US4228853[P].1980-10-21. [47] WATTENBARGER R A,MCDOUGAL F W. Oil production response to in-situ electrical resistance heating (ERH)[J]. Journal of Canadian Petroleum Technology,1988,27:45-50. [48] BUETTNER H M,DAILY W D. Cleaning contaminated soil using electrical heating and air stripping[J]. Journal of Environmental Engineering,1995,121:580-588. [49] VAN ZUTPHEN M,HERON G,ENFIELD C G,et al. Resistive heating enhanced soil vapor extraction of chlorinated solvents from trichloroethylene contaminated silty,low permeable soil[C]//6th International FZK/TNO Conference on Contaminated Soil(ConSoil 98). Edinburgh:Forschungszentrum Karlsruhe,Tech & Umwelt,1998:561-570. [50] McMillan-McGee Corporation. Technical description:ET-DSPTM in situ thermal remediation[EB/OL].[2016-11-01]. http://www.mcmillan-mcgee.com/mcmillan-mcgee/papers/ETDSP-Technical-Description-01.pdf. [51] 李鹏,廖晓勇,阎秀兰,等. 热强化气相抽提对不同质地土壤中苯去除的影响[J]. 环境科学,2014,35(10):3888-3895. LI P,LIAO X Y,YAN X L,et al. Effect of thermal enhanced soil vapor extraction on benzene removal indifferent soil textures[J]. Environmental Science,2014,35(10):3888-3895. [52] DEV H,CONDORELLI P,BRIDGES J,et al. In situ radio frequency heating process for decontamination of soil[C]//EXNER J. Solving Hazardous Waste Problems:Learning from Dioxins. Washington:American Chemical Society,1984:332-339. [53] BOWDERS J J,CORSI R L,DEEDS N E,et al. Field performance of enhanced soil vapor extraction with radio frequency heating[C]//BOUAZZA A,KODIKARA J,PARKER R. 1st Australia/New Zealand Conference on Environmental Geotechnics (GEOENVIRONMENT 97). Melbourne:Australian Geomechanics Society,1997:523-529. [54] PRICE S L,KASEVICH R S,JOHNSON M A,et al. Radio frequency heating for soil remediation[J]. Journal of the Air & Waste Management Association,1999,49(2):136-145. [55] 罗启仕,朱杰,喻恺,等. 适用于高粘性污染土壤的射频加热气相抽提高级氧化原位修复装置及其修复方法:103624072A[P]. 2014-03-12. LUO Q S,ZHU J,YU K,et al. In-situ high viscous contaminated soil remediation device and method which combine radio frequency heating,vapor extraction and thermal enhanced advanced oxidation:103624072A[P]. 2014-03-12. [56] 杨伟,宋震宇,李野,等. 射频加热强化土壤气相抽提技术的应用[J]. 环境工程学报,2015,9(3):1483-1488. YANG W,SONG Z Y,LI Y,et al. Application of radio frequency enhanced soil vapor extraction[J]. Chinese Journal of Environmental Engineering,2015,9(3):1483-1488. [57] U.S. Environmental Protection Agency. Superfund remedy report(14th Edition)[R]. Washington:U.S. Environmental Protection Agency,2013:7-11. [58] SMITH G,FLEMING D,JURKA V,et al. Closure of trichloroethene and 1,1,1-trichloroethane DNAPL remediation using thermal technologies[C]//WICKRAMANAYAKE G B,GAVASKAR A R,2nd International Conference on Remediation of Chlorinated and Recalcitrant Compounds,Monterey:Battelle,2000:167-174. [59] ROLAND U,REMMLER M,KOPINKE F D,et al. In-situ remediation using radio-frequency heating[C]//6th International FZK/TNO Conference on Contaminated Soil(ConSoil 98). Edinburgh:Forschungszentrum Karlsruhe,Tech & Umwelt,1998:599-607. [60] American Society for Testing and Materials. Standard guide for greener cleanups:ASTM E2893-16[S]. West Conshohocken:ASTM International,2016. [61] U.S. Environmental Protection Agency. Greener Cleanup Consensus Standard Initiative[EB/OL].[2016-11-01]. http://www.epa.gov/oswer/greenercleanups/standard.html. |
[1] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
[2] | SHAO Zhiguo, REN Wen, XU Shipei, NIE Fan, XU Yu, LIU Longjie, XIE Shuixiang, LI Xingchun, WANG Qingji, XIE Jiacai. Influence of final temperature on the distribution and characteristics of oil-based drilling cuttings pyrolysis products [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4929-4938. |
[3] | SHI Keke, LIU Muzi, ZHAO Qiang, LI Jinping, LIU Guang. Properties and research progress of magnesium based hydrogen storage materials [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4731-4745. |
[4] | JIANG Jing, CHEN Xiaoyu, ZHANG Ruiyan, SHENG Guangyao. Research progress of manganese-loaded biochar preparation and its application in environmental remediation [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4385-4397. |
[5] | SHANG Yu, XIAO Man, CUI Qiufang, TU Te, YAN Shuiping. Recovery characteristics of PVDF/BN-OH flat composite membrane for waste heat of hot stripped gas in CO2 capture process [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1618-1628. |
[6] | LIU Yulong, HU Nan, CHEN Xiangbiao, CHEN Sencai, ZENG Bingyong, DING Dexin. Circulating adsorption-desorption properties and kinetic analysis of uranium by strong basic anion resins [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5574-5583. |
[7] | WANG Shengnan, ZHENG Xu. Research on activated carbon fiber based composite adsorbents for atmospheric water harvesting [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5567-5573. |
[8] | SUN Xianhang, REN Zhu, ZHANG Guojun, SUN Yuan, FAN Kaifeng, HUANG Weiqiu. Study on the desorption mechanism of toluene in activated carbon under supercritical CO2 [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 631-636. |
[9] | WANG Yiru, SONG Xiaosan, SHUI Boyang, WANG Sanfan. Progress in amine-functionalized mesoporous silica for CO2 capture [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 536-544. |
[10] | WANG Shengnan, CHEN Kang, ZHENG Xu. Recent progress of moisture sorbent for adsorption-based atmospheric water harvesting [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3636-3647. |
[11] | WANG Yujing, ZHANG Nan, LIU Shejiang, MIAO Chen, LIU Xiuli. Performance and mechanism of thermochemical technology for oily sludge cleaning [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3333-3340. |
[12] | CHENG Gonglin, REN Xinfeng, XU Dongfei, WANG Xueguang, LU Xionggang, SHANG Xingfu. Vapor-phase synthesis of guaethol on amorphous Al-P-O catalyst [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1900-1907. |
[13] | LI Hong, JI Ke, Tianqinji QI, LI Xiaojing, WAN Huihui, ZHANG Yongchun, CHEN Shaoyun. Properties of CO2 absorption-desorption based on alcohol amines solutions and their degradation [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 1025-1035. |
[14] | ZHONG Lirong, HE Feiqiang, DONG Beibei, LIU Ziwei, DING Jianhua. Vacuum desorption of NO from Fe Ⅱ EDTA-NO solution generated in wet flue gas denitrification [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 6176-6184. |
[15] | WANG Dongliang, XIE Jiangpeng, MENG Wenliang, LI Jingwei, ZHOU Huairong. Multi-objective capacity and heat analysis of amine-based SO2 capture process from acidity coefficient (pKa) model [J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5669-5676. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |