Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (04): 1961-1969.DOI: 10.16085/j.issn.1000-6613.2018-1478
• Fine chemicals • Previous Articles Next Articles
Zheng FAN1(),Zhao LIU1,Xiaoyan JING1,Panpan JI1,Hui ZHAO2,Jian KANG2
Received:
2018-07-16
Revised:
2018-11-05
Online:
2019-04-05
Published:
2019-04-05
作者简介:
<named-content content-type="corresp-name">范峥</named-content>(1982—),男,博士,副教授,研究方向为油气加工过程腐蚀控制。E-mail:<email>fanzheng@xsyu.edu.cn</email>。
基金资助:
CLC Number:
Zheng FAN, Zhao LIU, Xiaoyan JING, Panpan JI, Hui ZHAO, Jian KANG. Prediction of corrosion inhibition efficiency of imidazoline derivatives using fuzzy artificial neural network based on quantum chemical characteristics[J]. Chemical Industry and Engineering Progress, 2019, 38(04): 1961-1969.
范峥, 刘钊, 井晓燕, 姬盼盼, 赵辉, 康建. 利用量子化学特征的模糊人工神经网络预测咪唑啉衍生物缓蚀效率[J]. 化工进展, 2019, 38(04): 1961-1969.
序号 | 名称 | I /μA·cm-2 | R /% |
---|---|---|---|
1 | 1-(2-氨基乙基)-2-苄基咪唑啉 | 57.80 | 87.87 |
2 | 1-(2-氨基乙基)-2-硬脂酸咪唑啉 | 29.26 | 93.86 |
3 | 1-(2-氨基乙基)-2-油酸咪唑啉 | 81.39 | 82.92 |
4 | 1-(2-氨基乙基)-2-丙基咪唑啉 | 108.26 | 77.28 |
5 | 1-(2-乙基)-2-辛基咪唑 | 177.59 | 62.73 |
6 | 1-(2-羟乙基)-2-丙基咪唑啉 | 185.69 | 61.03 |
7 | 2-甲基砜-4, 5-二氢-1H-咪唑 | 267.94 | 43.77 |
8 | 2-乙基砜-4, 5-二氢-1H-咪唑 | 313.92 | 34.12 |
9 | 2-苯基-2-咪唑啉 | 18.96 | 96.02 |
10 | 2-甲基-2-咪唑啉 | 35.98 | 92.45 |
11 | 咪唑 | 236.06 | 50.46 |
12 | 2-丙基-2-咪唑啉 | 170.54 | 64.21 |
13 | 2-甲基-2-咪唑啉 | 212.42 | 55.42 |
14 | 4-羟甲基-5-甲基咪唑 | 67.76 | 85.78 |
15 | 苯并咪唑 | 34.12 | 92.84 |
16 | 萘胺唑啉 | 24.25 | 94.91 |
17 | 苯甲唑啉 | 216.81 | 54.50 |
18 | 4, 5-二氢-2-十一烷基-1-乙醇-1H-咪唑 | 138.04 | 71.03 |
19 | 2-甲基苯并咪唑 | 58.37 | 87.75 |
20 | 2-氨基苯并咪唑 | 55.23 | 88.41 |
序号 | 名称 | I /μA·cm-2 | R /% |
---|---|---|---|
1 | 1-(2-氨基乙基)-2-苄基咪唑啉 | 57.80 | 87.87 |
2 | 1-(2-氨基乙基)-2-硬脂酸咪唑啉 | 29.26 | 93.86 |
3 | 1-(2-氨基乙基)-2-油酸咪唑啉 | 81.39 | 82.92 |
4 | 1-(2-氨基乙基)-2-丙基咪唑啉 | 108.26 | 77.28 |
5 | 1-(2-乙基)-2-辛基咪唑 | 177.59 | 62.73 |
6 | 1-(2-羟乙基)-2-丙基咪唑啉 | 185.69 | 61.03 |
7 | 2-甲基砜-4, 5-二氢-1H-咪唑 | 267.94 | 43.77 |
8 | 2-乙基砜-4, 5-二氢-1H-咪唑 | 313.92 | 34.12 |
9 | 2-苯基-2-咪唑啉 | 18.96 | 96.02 |
10 | 2-甲基-2-咪唑啉 | 35.98 | 92.45 |
11 | 咪唑 | 236.06 | 50.46 |
12 | 2-丙基-2-咪唑啉 | 170.54 | 64.21 |
13 | 2-甲基-2-咪唑啉 | 212.42 | 55.42 |
14 | 4-羟甲基-5-甲基咪唑 | 67.76 | 85.78 |
15 | 苯并咪唑 | 34.12 | 92.84 |
16 | 萘胺唑啉 | 24.25 | 94.91 |
17 | 苯甲唑啉 | 216.81 | 54.50 |
18 | 4, 5-二氢-2-十一烷基-1-乙醇-1H-咪唑 | 138.04 | 71.03 |
19 | 2-甲基苯并咪唑 | 58.37 | 87.75 |
20 | 2-氨基苯并咪唑 | 55.23 | 88.41 |
序号 | E HOMO/eV | E LUMO/eV | μ /debyes | φ/eV | η/eV | σ/eV-1 | Fi + | Fi - | ΔN | Q ring | R/% |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | -5.22867 | 0.03157 | 3.2261 | -17186.0 | 2.6301 | 0.3802 | -0.1401 | -0.1536 | 0.8367 | -0.8372 | 87.87 |
2 | -5.59766 | -0.46341 | 3.3270 | -33141.4 | 2.5671 | 0.3895 | -0.0741 | -0.0084 | 0.7731 | -0.6099 | 93.86 |
3 | -5.38378 | -0.48926 | 2.9395 | -33108.0 | 2.4473 | 0.4086 | -0.2015 | -0.1984 | 0.8302 | -0.5810 | 82.92 |
4 | -5.17071 | 1.15349 | 3.4285 | -13039.2 | 3.1621 | 0.3162 | -0.1877 | -0.1649 | 0.7893 | -0.8337 | 77.28 |
5 | -5.22132 | 1.02723 | 3.1723 | -18386.9 | 3.1243 | 0.3201 | 0.0064 | -0.1108 | 0.7847 | -0.8281 | 62.73 |
6 | -5.36663 | 1.02723 | 3.1517 | -13579.6 | 3.1969 | 0.3128 | -0.1466 | -0.1577 | 0.7555 | -0.8354 | 61.03 |
7 | -5.71439 | 0.78777 | 1.9873 | -18090.2 | 3.2511 | 0.3076 | -0.0778 | -0.1241 | 0.6977 | -1.1807 | 43.77 |
8 | -5.68256 | 0.76083 | 1.8880 | -19159.8 | 3.2217 | 0.3104 | -0.1081 | -0.0890 | 0.7045 | -1.1884 | 34.12 |
9 | -5.59657 | -0.75103 | 2.7308 | -12472.3 | 2.4228 | 0.4128 | -0.0809 | -0.0204 | 0.7896 | -1.0130 | 96.02 |
10 | -5.43384 | 1.17336 | 3.2384 | -7255.9 | 3.3036 | 0.3027 | -0.1784 | -0.1468 | 0.7370 | -0.9167 | 92.45 |
11 | -6.36148 | 0.65335 | 3.9745 | -6153.6 | 3.5074 | 0.2851 | -0.0554 | -0.1107 | 0.5910 | -0.7971 | 50.46 |
12 | -5.44718 | 1.10669 | 3.1385 | -9394.9 | 3.2769 | 0.3052 | -0.1621 | -0.1486 | 0.7369 | -0.9283 | 64.21 |
13 | -6.04120 | 0.73144 | 4.2307 | -7223.3 | 3.3863 | 0.2953 | -0.0714 | -0.1255 | 0.6416 | -0.6249 | 55.42 |
14 | -6.10787 | 0.31946 | 3.8462 | -10338.7 | 3.2137 | 0.3112 | -0.0640 | -0.0977 | 0.6388 | -0.4985 | 85.78 |
15 | -6.16692 | -0.45144 | 3.5905 | -10333.7 | 2.8577 | 0.3499 | -0.1787 | -0.1502 | 0.6458 | -0.5350 | 92.84 |
16 | -5.37125 | 0.27374 | 3.0434 | -18223.2 | 2.8225 | 0.3543 | -0.1178 | -0.1125 | 0.7885 | -0.7353 | 94.91 |
17 | -5.57262 | -0.14149 | 2.9965 | -13541.7 | 2.7156 | 0.3682 | 0.0103 | -0.1308 | 0.7628 | -0.9170 | 54.50 |
18 | -5.37153 | 1.02179 | 3.3133 | -22135.7 | 3.1967 | 0.3128 | -0.0946 | -0.0692 | 0.7547 | -0.8356 | 71.03 |
19 | -6.00528 | -0.30939 | 3.6124 | -11403.6 | 2.8479 | 0.3511 | -0.1677 | -0.1544 | 0.6746 | -0.3740 | 87.75 |
20 | -5.26214 | 0.22477 | 4.6576 | -11839.8 | 2.7435 | 0.3645 | -0.1345 | -0.1308 | 0.8167 | -0.1756 | 88.41 |
序号 | E HOMO/eV | E LUMO/eV | μ /debyes | φ/eV | η/eV | σ/eV-1 | Fi + | Fi - | ΔN | Q ring | R/% |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | -5.22867 | 0.03157 | 3.2261 | -17186.0 | 2.6301 | 0.3802 | -0.1401 | -0.1536 | 0.8367 | -0.8372 | 87.87 |
2 | -5.59766 | -0.46341 | 3.3270 | -33141.4 | 2.5671 | 0.3895 | -0.0741 | -0.0084 | 0.7731 | -0.6099 | 93.86 |
3 | -5.38378 | -0.48926 | 2.9395 | -33108.0 | 2.4473 | 0.4086 | -0.2015 | -0.1984 | 0.8302 | -0.5810 | 82.92 |
4 | -5.17071 | 1.15349 | 3.4285 | -13039.2 | 3.1621 | 0.3162 | -0.1877 | -0.1649 | 0.7893 | -0.8337 | 77.28 |
5 | -5.22132 | 1.02723 | 3.1723 | -18386.9 | 3.1243 | 0.3201 | 0.0064 | -0.1108 | 0.7847 | -0.8281 | 62.73 |
6 | -5.36663 | 1.02723 | 3.1517 | -13579.6 | 3.1969 | 0.3128 | -0.1466 | -0.1577 | 0.7555 | -0.8354 | 61.03 |
7 | -5.71439 | 0.78777 | 1.9873 | -18090.2 | 3.2511 | 0.3076 | -0.0778 | -0.1241 | 0.6977 | -1.1807 | 43.77 |
8 | -5.68256 | 0.76083 | 1.8880 | -19159.8 | 3.2217 | 0.3104 | -0.1081 | -0.0890 | 0.7045 | -1.1884 | 34.12 |
9 | -5.59657 | -0.75103 | 2.7308 | -12472.3 | 2.4228 | 0.4128 | -0.0809 | -0.0204 | 0.7896 | -1.0130 | 96.02 |
10 | -5.43384 | 1.17336 | 3.2384 | -7255.9 | 3.3036 | 0.3027 | -0.1784 | -0.1468 | 0.7370 | -0.9167 | 92.45 |
11 | -6.36148 | 0.65335 | 3.9745 | -6153.6 | 3.5074 | 0.2851 | -0.0554 | -0.1107 | 0.5910 | -0.7971 | 50.46 |
12 | -5.44718 | 1.10669 | 3.1385 | -9394.9 | 3.2769 | 0.3052 | -0.1621 | -0.1486 | 0.7369 | -0.9283 | 64.21 |
13 | -6.04120 | 0.73144 | 4.2307 | -7223.3 | 3.3863 | 0.2953 | -0.0714 | -0.1255 | 0.6416 | -0.6249 | 55.42 |
14 | -6.10787 | 0.31946 | 3.8462 | -10338.7 | 3.2137 | 0.3112 | -0.0640 | -0.0977 | 0.6388 | -0.4985 | 85.78 |
15 | -6.16692 | -0.45144 | 3.5905 | -10333.7 | 2.8577 | 0.3499 | -0.1787 | -0.1502 | 0.6458 | -0.5350 | 92.84 |
16 | -5.37125 | 0.27374 | 3.0434 | -18223.2 | 2.8225 | 0.3543 | -0.1178 | -0.1125 | 0.7885 | -0.7353 | 94.91 |
17 | -5.57262 | -0.14149 | 2.9965 | -13541.7 | 2.7156 | 0.3682 | 0.0103 | -0.1308 | 0.7628 | -0.9170 | 54.50 |
18 | -5.37153 | 1.02179 | 3.3133 | -22135.7 | 3.1967 | 0.3128 | -0.0946 | -0.0692 | 0.7547 | -0.8356 | 71.03 |
19 | -6.00528 | -0.30939 | 3.6124 | -11403.6 | 2.8479 | 0.3511 | -0.1677 | -0.1544 | 0.6746 | -0.3740 | 87.75 |
20 | -5.26214 | 0.22477 | 4.6576 | -11839.8 | 2.7435 | 0.3645 | -0.1345 | -0.1308 | 0.8167 | -0.1756 | 88.41 |
名称 | 平方和 | 自由度 | 均方 | F值 | P值 | 显著性 | |
---|---|---|---|---|---|---|---|
E HOMO | 组间 | 6.3160×104 | 1 | 6.3160×104 | 342.09 | 1.3456×10-20 | 显著 |
组内 | 7.0160×103 | 38 | 1.8463×102 | ||||
E LUMO | 组间 | 5.3998×104 | 1 | 5.3998×104 | 292.26 | 1.9587×10-19 | 显著 |
组内 | 7.0210×103 | 38 | 1.8476×102 | ||||
μ | 组间 | 4.9834×104 | 1 | 4.9834×104 | 269.68 | 7.5562×10-19 | 显著 |
组内 | 7.0220×103 | 38 | 1.8479×102 | ||||
φ | 组间 | 2.3637×109 | 1 | 2.3637×109 | 83.90 | 4.1972×10-11 | 显著 |
组内 | 1.0705×109 | 38 | 2.8171×107 | ||||
η | 组间 | 5.0230×104 | 1 | 5.0230×104 | 272.06 | 6.5237×10-19 | 显著 |
组内 | 7.0160×103 | 38 | 1.8463×102 | ||||
σ | 组间 | 5.4067×104 | 1 | 5.4067×104 | 292.92 | 1.8855×10-19 | 显著 |
组内 | 7.0140×103 | 38 | 1.8458×102 | ||||
Fi + | 组间 | 5.4729×104 | 1 | 5.4729×104 | 296.50 | 1.5359×10-19 | 显著 |
组内 | 7.0140×103 | 38 | 1.8458×102 | ||||
Fi - | 组间 | 5.4743×104 | 1 | 5.4743×104 | 296.58 | 1.5289×10-19 | 显著 |
组内 | 7.0140×103 | 38 | 1.8458×102 | ||||
ΔN | 组间 | 5.3481×104 | 1 | 5.3481×104 | 289.74 | 2.2666×10-19 | 显著 |
组内 | 7.0140×103 | 38 | 1.8458×102 | ||||
Q ring | 组间 | 5.5697×104 | 1 | 5.5697×104 | 301.72 | 1.1434×10-19 | 显著 |
组内 | 7.0150×103 | 38 | 1.8460×102 |
名称 | 平方和 | 自由度 | 均方 | F值 | P值 | 显著性 | |
---|---|---|---|---|---|---|---|
E HOMO | 组间 | 6.3160×104 | 1 | 6.3160×104 | 342.09 | 1.3456×10-20 | 显著 |
组内 | 7.0160×103 | 38 | 1.8463×102 | ||||
E LUMO | 组间 | 5.3998×104 | 1 | 5.3998×104 | 292.26 | 1.9587×10-19 | 显著 |
组内 | 7.0210×103 | 38 | 1.8476×102 | ||||
μ | 组间 | 4.9834×104 | 1 | 4.9834×104 | 269.68 | 7.5562×10-19 | 显著 |
组内 | 7.0220×103 | 38 | 1.8479×102 | ||||
φ | 组间 | 2.3637×109 | 1 | 2.3637×109 | 83.90 | 4.1972×10-11 | 显著 |
组内 | 1.0705×109 | 38 | 2.8171×107 | ||||
η | 组间 | 5.0230×104 | 1 | 5.0230×104 | 272.06 | 6.5237×10-19 | 显著 |
组内 | 7.0160×103 | 38 | 1.8463×102 | ||||
σ | 组间 | 5.4067×104 | 1 | 5.4067×104 | 292.92 | 1.8855×10-19 | 显著 |
组内 | 7.0140×103 | 38 | 1.8458×102 | ||||
Fi + | 组间 | 5.4729×104 | 1 | 5.4729×104 | 296.50 | 1.5359×10-19 | 显著 |
组内 | 7.0140×103 | 38 | 1.8458×102 | ||||
Fi - | 组间 | 5.4743×104 | 1 | 5.4743×104 | 296.58 | 1.5289×10-19 | 显著 |
组内 | 7.0140×103 | 38 | 1.8458×102 | ||||
ΔN | 组间 | 5.3481×104 | 1 | 5.3481×104 | 289.74 | 2.2666×10-19 | 显著 |
组内 | 7.0140×103 | 38 | 1.8458×102 | ||||
Q ring | 组间 | 5.5697×104 | 1 | 5.5697×104 | 301.72 | 1.1434×10-19 | 显著 |
组内 | 7.0150×103 | 38 | 1.8460×102 |
序号 | E HOMO/eV | E LUMO/eV | μ /debyes | φ/eV | η/eV | σ/eV-1 | Fi + | Fi - | ΔN | Q ring | R′/% | R/% |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | -6.22896 | 0.68463 | 4.3593 | -7223.01 | 3.4568 | 0.2892 | -0.1315 | -0.1457 | 0.6115 | -0.7286 | 72.13 | 72.06 |
2 | -6.05943 | 0.80110 | 3.5835 | -7223.3 | 3.4302 | 0.2915 | -0.0664 | -0.1132 | 0.6370 | -0.5974 | 86.52 | 86.37 |
3 | -6.82842 | -0.80736 | 5.8665 | -13422.0 | 3.0105 | 0.3321 | -0.1649 | -0.1592 | 0.5284 | -0.8744 | 73.28 | 73.16 |
4 | -5.55874 | -0.04707 | 2.8229 | -16717.5 | 2.7558 | 0.3628 | -0.1240 | -0.1511 | 0.7614 | -0.7801 | 78.66 | 78.45 |
5 | -6.39359 | -1.46832 | 5.7182 | -19741.5 | 2.4626 | 0.406 | -0.0742 | -0.1223 | 0.6231 | -0.9458 | 92.35 | 92.56 |
序号 | E HOMO/eV | E LUMO/eV | μ /debyes | φ/eV | η/eV | σ/eV-1 | Fi + | Fi - | ΔN | Q ring | R′/% | R/% |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | -6.22896 | 0.68463 | 4.3593 | -7223.01 | 3.4568 | 0.2892 | -0.1315 | -0.1457 | 0.6115 | -0.7286 | 72.13 | 72.06 |
2 | -6.05943 | 0.80110 | 3.5835 | -7223.3 | 3.4302 | 0.2915 | -0.0664 | -0.1132 | 0.6370 | -0.5974 | 86.52 | 86.37 |
3 | -6.82842 | -0.80736 | 5.8665 | -13422.0 | 3.0105 | 0.3321 | -0.1649 | -0.1592 | 0.5284 | -0.8744 | 73.28 | 73.16 |
4 | -5.55874 | -0.04707 | 2.8229 | -16717.5 | 2.7558 | 0.3628 | -0.1240 | -0.1511 | 0.7614 | -0.7801 | 78.66 | 78.45 |
5 | -6.39359 | -1.46832 | 5.7182 | -19741.5 | 2.4626 | 0.406 | -0.0742 | -0.1223 | 0.6231 | -0.9458 | 92.35 | 92.56 |
序号 | R′ | R | F | ||||
---|---|---|---|---|---|---|---|
数值/% | 方差 | 自由度 | 数值% | 方差 | 自由度 | ||
1 | 72.13 | 72.06 | |||||
2 | 86.52 | 86.37 | |||||
3 | 73.28 | 75.5488 | 4 | 73.16 | 77.3026 | 4 | 0.9773 |
4 | 78.66 | 78.45 | |||||
5 | 92.35 | 92.56 |
序号 | R′ | R | F | ||||
---|---|---|---|---|---|---|---|
数值/% | 方差 | 自由度 | 数值% | 方差 | 自由度 | ||
1 | 72.13 | 72.06 | |||||
2 | 86.52 | 86.37 | |||||
3 | 73.28 | 75.5488 | 4 | 73.16 | 77.3026 | 4 | 0.9773 |
4 | 78.66 | 78.45 | |||||
5 | 92.35 | 92.56 |
A | —— | 语言变量值 |
---|---|---|
b | —— | 高斯隶属函数宽度 |
c | —— | 高斯隶属函数中心 |
I 0,I | —— | 分别为空白和加药条件下的电流密度,μA/cm2 |
p | —— | 后件网络连接权值 |
α | —— | 适应度 |
β | —— | 学习效率 |
μ | —— | 高斯隶属函数 |
ζ | —— | 动量 |
A | —— | 语言变量值 |
---|---|---|
b | —— | 高斯隶属函数宽度 |
c | —— | 高斯隶属函数中心 |
I 0,I | —— | 分别为空白和加药条件下的电流密度,μA/cm2 |
p | —— | 后件网络连接权值 |
α | —— | 适应度 |
β | —— | 学习效率 |
μ | —— | 高斯隶属函数 |
ζ | —— | 动量 |
1 | 薛丹, 胡敏 . 陕北气田气井腐蚀速率影响因素及规律[J]. 表面技术, 2016, 45(2): 169-174. |
XUE Dan , HU Min . Factors and rules affecting gas well corrosion rate in Shanbei gasfield[J]. Surface Technology, 2016, 45(2): 169-174. | |
2 | REN Y M , ZHANG J , DU M , et al . The synergistic inhibition effect between imidazoline-based dissymmetric bis-quaternary ammonium salts and thiourea on Q235 steel in CO2 corrosion process[J]. Researchon Chemical Intermediates, 2016, 42(2): 641-657. |
3 | 郭睿, 程敏, 杨江月, 等 . 月桂酸咪唑啉硫酸酯盐缓蚀剂在A3钢表面吸附成膜行为[J]. 化工进展, 2017, 36(1): 336-342. |
GUO Rui , CHENG Min , YANG Jiangyue , et al . Adsorption behavior of lauryl imidazoline sulfuric ester inhibitor on the surface of A3 steel[J]. Chemical Industry and Engineering Progress, 2017, 36(1): 336-342. | |
4 | 吴刚, 郝宁眉, 陈银娟, 等 . 新型油酸咪唑啉缓蚀剂的合成及其性能评价[J]. 化工学报, 2013, 64(4): 1485-1492. |
WU Gang , HAO Ningmei , CHEN Yinjuan , et al . Synthesis and performance evaluation of a new oleic imidazoline corrosion inhibitor[J]. CIESC Journal, 2013, 64(4): 1485-1492. | |
5 | ZHANG J , NIU L W , ZHU F M , et al . Theoretical and experimental studies for corrosion inhibition performance of Q235 steel by imidazoline inhibitors against CO2 corrosion[J]. Journal of Surfactants and Detergents, 2013, 16(6): 947-956. |
6 | AL-AZAWI K F , AL-BAGHDADI S B , MOHAMED AYAD Z , et al . Synthesis, inhibition effects and quantum chemical studies of a novel coumarin derivative on the corrosion of mild steel in a hydrochloric acid solution[J]. Chemistry Central Journal, 2016, 10(1): 1-9. |
7 | ZHANG W W , MA R, LI S , et al . Electrochemical and quantum chemical studies of azoles as corrosion inhibitors for mild steel in hydrochloric acid[J]. Chemical Research in Chinese Universities, 2016, 32(5): 827-837. |
8 | 胡松青, 胡建春, 石鑫, 等 . 咪唑啉衍生物缓蚀剂的定量构效关系及分子设计[J]. 物理化学学报, 2009, 25(12): 2524-2530. |
HU Songqing , HU Jiangchun , SHI Xin , et al . QSAR and molecular design of imidazoline derivatives as corrosion inhibitors[J]. Acta Physico-Chimica Sinica, 2009, 25(12): 2524-2530. | |
9 | 梁占伟, 陈鸿伟, 杨新, 等 . 混燃煤气气氛下NO x 排放特性与建模预测[J]. 化工进展, 2017, 36(11): 4265-4271. |
LIANG Zhanwei , CHEN Hongxin , YANG Xin , et al . Characteristic of NO x emissions in co-firing gases and modeling prediction[J]. Chemical Industry and Engineering Progress, 2017, 36(11): 4265-4271. | |
10 | GHIASI M M. , BAHADORI A , ZENDEHBOUDI S . Estimation of triethylene glycol (TEG) purity in natural gas dehydration units using fuzzy neural network[J]. Journal of Natural Gas Science and Engineering, 2014,17: 26-32. |
11 | 付柯, 谢良才, 闫雨瑗, 等 . 改进BP神经网络预测Ni/Al2O3催化CH4-CO2重整反应[J]. 化工进展, 2017, 36(7): 2393-2399. |
FU Ke , XIE Liangcai , YAN Yuyuan , et al . Predicting model of CH4-CO2 reforming on Ni/Al2O3 catalyst by improved back propagation (BP)neural network[J]. Chemical Industry and Engineering Progress, 2017, 36(7): 2393-2399. | |
12 | PENG X H XIE S Y , YU Y H , et al . Fuzzy neural network based prediction model applied in primary component analysis[J]. Cluster Computing, 2017, 20(1): 131-140. |
13 | ZOU K , GE X S . Neural-network-based fuzzy logic control of a 3D rigid pendulum[J]. International Journal of Control, Automation and Systems, 2017, 15(5): 2425-2435. |
14 | 朱鹏飞, 夏陆岳, 周猛飞, 等 . 基于混合建模技术的聚氯乙烯粒径分布预测[J]. 高校化学工程学报, 2014, 28(2): 384-389. |
ZHU Pengfei , XIA Luyue , ZHOU Mengfei , et al . Prediction for the particle size distribution of polyvinyl chloride based on hybrid modeling technique[J]. Journal of Chemical Engineering of Chinese Universities, 2014, 28(2): 384-389. | |
15 | TSAI C C , TAI F C , CHANG Y L , et al . Adaptive predictive PID control using fuzzy wavelet neural networks for nonlinear discrete-time time-delay systems[J]. International Journal of Fuzzy Systems, 2017, 19(6): 1718-1730. |
16 | QI X N , LIU Y Q , GUO Q J , et al . Performance prediction of a shower cooling tower using wavelet neural network[J]. Applied Thermal Engineering, 2016, 108(7): 475-485. |
17 | SAGHATOLESLAMI N , VATANKHAH G H , KARIMI H , et al . Prediction of the overall sieve tray efficiency for a group of hydrocarbons, an artificial neural network approach[J]. Journal of Natural Gas Science and Engineering, 2011, 3(1): 319-325. |
18 | YANG H J , HU X . Wavelet neural network with improved genetic algorithm for traffic flow time series prediction[J]. Optik International Journal for Light and Electron Optics, 2016, 127(19): 8103-8110. |
19 | 马晓丹, 刘刚, 周薇, 等 . 基于量子遗传模糊神经网络的苹果果实识别[J]. 农业机械学报, 2013, 44(12): 227-232, 251. |
Xiaodan MA , LIU Gang , ZHOU Wei , et al . Apple fruit recognition based on quantum genetic fuzzy neural network[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(12): 227-232, 251. | |
20 | 向敏, 何川, 田力, 等 . 基于模糊神经网络的配电网无线通信系统性能评估方法[J]. 电力科学与技术学报, 2016, 31(2): 64-71. |
XIANG Min , HE Chuan , TIAN Li , et al . Evaluation method for wireless communication performance of distribution network based on fuzzy neural network[J]. Journal of Electric Power Science and Technology, 2016, 31(2): 64-71. | |
21 | 袁清珂, 石亚平, 张明天, 等 . 基于变论域电阻点焊模糊神经网络控制方法[J]. 焊接学报, 2010, 31(1): 25-28, 32, 114. |
YUAN Qingke , SHI Yaping , ZHANG Mingtian , et al . Fuzzy neural network control method for resistance spot welding based on variable universe[J]. Transactions of the China Welding Institution , 2010, 31(1): 25-28, 32, 114. | |
22 | 杨智琴 . 山西省地质灾害气象预警模型探讨[J]. 中国地质灾害与防治学报, 2015, 26(1): 117-121. |
YANG Zhiqin . Meteorological early warning model research geologic disaster in Shanxi province[J]. The Chinese Journal of Geological Hazard and Control, 2015, 26(1): 117-121. |
[1] | XU Chenyang, DU Jian, ZHANG Lei. Chemical reaction evaluation based on graph network [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 205-212. |
[2] | WANG Junjie, PAN Yanqiu, NIU Yabin, YU Lu. Molecular level catalytic reforming model construction and application [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3404-3412. |
[3] | LI Lanyu, HUANG Xinye, WANG Xiaonan, QIU Tong. Reflection and prospects on the intelligent transformation of chemical engineering research [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3325-3330. |
[4] | ZENG Siying, YANG Minbo, FENG Xiao. Machine learning-based prediction of coalbed methane composition and real-time optimization of liquefaction process [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5059-5066. |
[5] | WANG Lu, ZHANG Lei, DU Jian. High-throughput screening of zeolite materials for CO2/N2 selective adsorption separation by machine learning [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 148-158. |
[6] | SUN Deyun, HU Yanhong, LIU Peng, TANG Mao, HU Ze, LIU Zhaogang, WU Jinxiu. Interaction mechanism of CTAB and Ce3+ in different cerium salt systems (nitrate, sulfate, chloride) [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3212-3220. |
[7] | CHEN Lei, YAN Xingqing, HU Yanwei, YU Shuai, YANG Kai, CHEN Shaoyun, GUAN Hui, YU Jianliang, MAHGEREFTEH Haroun, MARTYNOV Sergey. Research progress on fracture control of accidental leakage and decompression in CO2 pipeline transportation [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1241-1255. |
[8] | ZHU Tao, HAN Yiwei, LIU Shuai, XIE Wei, YUAN Bo, SONG Huiping, CHEGN Fangqin. Progress in electrocatalysis by single-atom site catalysts [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 666-681. |
[9] | LI Shuai, LIU Mingyan, MA Yongli. Prediction of scaling location of fluid in geothermal well based on BP artificial neural network [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5761-5770. |
[10] | LI Dan, YANG Siyu, QIAN Yu. Syngas cryogenic separation process combined with lithium bromide absorption refrigeration and organic Rankine cycle [J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5236-5246. |
[11] | WANG Ying, RAN Jinye, ZHANG Jin, YANG Xin, ZHANG Hao. Prediction of heavy haze pollution episodes based on deep feature fusion of pollutant and meteorological time series in Xi’an during 2015—2020 heating season [J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5685-5694. |
[12] | LI Fangguo, ZHANG Beike, GAO Dong. Construction method of HAZOP knowledge graph [J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4666-4677. |
[13] | FAN Zheng, TIAN Runzhi, LIN Liang, HAN Yanzhong, GUO Yang, DOU Longlong, JING Genhui, TYOOR Agi Damian. Desulfurization optimization of reforming catalytic dry gas using radial basis artificial neural network based on PSO algorithm [J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3107-3118. |
[14] | MA Shuangchen, LIN Chenyu, ZHOU Quan, WU Zhongsheng, LIU Qi, CHEN Wentong, FAN Shuaijun, YAO Yakun, MA Caini. Prediction model of FGD system based on deep neural network and its application [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1689-1698. |
[15] | Wenyu YANG, Yingming XIE, Kun YAN, Junhua ZOU, Sheng SHU. Prediction of hydrate production in compressive cold storage system based on grey relational BP neural network [J]. Chemical Industry and Engineering Progress, 2021, 40(2): 664-670. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 812
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 282
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |