Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (04): 1853-1861.DOI: 10.16085/j.issn.1000-6613.2018-1254
• Materials science and technology • Previous Articles Next Articles
Jinghe HOU(),Shanshan LIU,Xiang SUN,Zhenyu XIAO,Huili DING(
)
Received:
2018-06-18
Revised:
2018-12-28
Online:
2019-04-05
Published:
2019-04-05
Contact:
Huili DING
通讯作者:
丁会利
作者简介:
侯敬贺(1994—),男,硕士研究生,研究方向为功能高分子材料。E-mail:<email>houjinghe1994@163.com</email>。|丁会利,教授,硕士生导师,研究方向为功能高分子材料。E-mail:<email>aleeding@hebut.edu.cn</email>。
基金资助:
CLC Number:
Jinghe HOU, Shanshan LIU, Xiang SUN, Zhenyu XIAO, Huili DING. Effect of main chain composition on the performance of proton exchange membrane of sulfonated aromatic polymer with low degree of sulfonation[J]. Chemical Industry and Engineering Progress, 2019, 38(04): 1853-1861.
侯敬贺, 刘闪闪, 孙翔, 肖振雨, 丁会利. 主链组成对低磺化度磺化芳香族聚合物质子交换膜性能的影响[J]. 化工进展, 2019, 38(04): 1853-1861.
膜样品 | 吸水率/% | 溶胀率/% | ||||||
---|---|---|---|---|---|---|---|---|
20℃ | 40℃ | 60℃ | 80℃ | 20℃ | 40℃ | 60℃ | 80℃ | |
SPES-30 | 17.2 | 18.8 | 19.3 | 24.3 | 16.7 | 18.5 | 19.4 | 23.3 |
SPES-50 | 51.9 | 60.7 | 77.6 | 138.9 | 41.3 | 51.2 | 74.2 | 116.7 |
SPTES-30 | 11.3 | 13.6 | 14.6 | 17.4 | 4.1 | 6.1 | 7.5 | 10.0 |
SPTES-50 | 36.9 | 42.4 | 56.1 | 105.9 | 7.5 | 13.6 | 25.6 | 71.1 |
Nafion 117[ | 17.8 | — | — | 28.6 | 13.7 | — | — | 21.9 |
膜样品 | 吸水率/% | 溶胀率/% | ||||||
---|---|---|---|---|---|---|---|---|
20℃ | 40℃ | 60℃ | 80℃ | 20℃ | 40℃ | 60℃ | 80℃ | |
SPES-30 | 17.2 | 18.8 | 19.3 | 24.3 | 16.7 | 18.5 | 19.4 | 23.3 |
SPES-50 | 51.9 | 60.7 | 77.6 | 138.9 | 41.3 | 51.2 | 74.2 | 116.7 |
SPTES-30 | 11.3 | 13.6 | 14.6 | 17.4 | 4.1 | 6.1 | 7.5 | 10.0 |
SPTES-50 | 36.9 | 42.4 | 56.1 | 105.9 | 7.5 | 13.6 | 25.6 | 71.1 |
Nafion 117[ | 17.8 | — | — | 28.6 | 13.7 | — | — | 21.9 |
膜样品 | 拉伸强度/MPa | 断裂伸长率/% |
---|---|---|
SPES-30 | 66.4 | 173.5 |
SPES-50 | 45.9 | 104.2 |
SPTES-30 | 62.9 | 52.7 |
SPTES-50 | 44.4 | 16.4 |
Nafion 117[ | 37.4 | 297.6 |
膜样品 | 拉伸强度/MPa | 断裂伸长率/% |
---|---|---|
SPES-30 | 66.4 | 173.5 |
SPES-50 | 45.9 | 104.2 |
SPTES-30 | 62.9 | 52.7 |
SPTES-50 | 44.4 | 16.4 |
Nafion 117[ | 37.4 | 297.6 |
膜样品 | 氧化稳定性 | |
---|---|---|
RW/% | τ/h | |
SPES-30 | 96.3 | >12 |
SPES-50 | 93.9 | 2.25 |
SPTES-30 | 106.5 | >12 |
SPTES-50 | 100.8 | 2.75 |
Nafion117[ | 99 | — |
膜样品 | 氧化稳定性 | |
---|---|---|
RW/% | τ/h | |
SPES-30 | 96.3 | >12 |
SPES-50 | 93.9 | 2.25 |
SPTES-30 | 106.5 | >12 |
SPTES-50 | 100.8 | 2.75 |
Nafion117[ | 99 | — |
膜样品 | 质子传导率/S·cm-1 | IEC /mequiv·g-1 | |||
---|---|---|---|---|---|
20℃ | 40℃ | 60℃ | 80℃ | ||
SPES-30 | 0.045 | 0.061 | 0.079 | 0.094 | 1.13 |
SPES-50 | 0.058 | 0.077 | 0.105 | 0.136 | 1.72 |
SPTES-30 | 0.047 | 0.064 | 0.087 | 0.103 | 1.00 |
SPTES-50 | 0.064 | 0.086 | 0.108 | 0.142 | 1.64 |
Nafion117[ | 0.081 | — | — | 0.168 | 0.91 |
膜样品 | 质子传导率/S·cm-1 | IEC /mequiv·g-1 | |||
---|---|---|---|---|---|
20℃ | 40℃ | 60℃ | 80℃ | ||
SPES-30 | 0.045 | 0.061 | 0.079 | 0.094 | 1.13 |
SPES-50 | 0.058 | 0.077 | 0.105 | 0.136 | 1.72 |
SPTES-30 | 0.047 | 0.064 | 0.087 | 0.103 | 1.00 |
SPTES-50 | 0.064 | 0.086 | 0.108 | 0.142 | 1.64 |
Nafion117[ | 0.081 | — | — | 0.168 | 0.91 |
1 | LABERTY-ROBERT C , VALLÉ K , PEREIRA F , et al . Design and properties of functional hybrid organic-inorganic membranes for fuel cells[J]. Chemical Society Reviews, 2011, 40(2): 961-1005. |
2 | XU J , CHENG H ,MA L,et al . Construction of a new continuous proton transport channel through a covalent crosslinking reaction between carboxyl and amino groups[J]. International Journal of Hydrogen Energy,2013,38(24): 10092-10103. |
3 | HE G , ZHAO J , HU S , et al . Functionalized carbon nanotube via distillation precipitation polymerization and its application in nafion-based composite membranes[J]. ACS Applied Materials & Interfaces,2014,6(17):15291-15301. |
4 | LI C , ZHANG Y , LIU X ,et al . Cross-linked fully aromatic sulfonated polyamide as a highly efficiency polymeric filler in SPEEK membrane for high methanol concentration direct methanol fuel cells[J]. Journal of Materials Science,2018,53(7): 5501-5510. |
5 | 吴魁, 解东来 . 高温质子交换膜研究进展[J]. 化工进展, 2012, 31(10): 2202-2206. |
WU Kui , XIE Donglai . Research progress in high temperature proton exchange membranes[J]. Chemical Industry and Engineering Progress, 2012, 31(10): 2202-2206. | |
6 | BAKANGURA E , WU L , GE L , et al . Mixed matrix proton exchange membranes for fuel cells: state of the art and perspectives[J]. Progress in Polymer Science, 2016, 57: 103-152. |
7 | EINSLA M L , YU S K , HAWLEY M , et al . Toward improved conductivity of sulfonated aromatic proton exchange membranes at low relative humidity[J]. Chemistry of Materials, 2008, 20(17): 5636-5642. |
8 | BAI Z W , DURSTOCK M F , DANG T D . Proton conductivity and properties of sulfonated polyarylenethioether sulfones as proton exchange membranes in fuel cells[J]. Journal of Membrane Science, 2006, 281(1): 508-516. |
9 | ZHANG H , MA C, WANG J , et al . Enhancement of proton conductivity of polymer electrolyte membrane enabled by sulfonated nanotubes[J]. International Journal of Hydrogen Energy, 2014, 39(2): 974-986. |
10 | 陶丹, 向雄志, 王雷 . 磺酸基在侧链萘环上的磺化聚芳醚质子交换膜的制备与性能研究[J]. 高分子学报, 2014(3): 326-332. |
TAO Dan , XIANG Xiongzhi , WANG Lei . Synthesis and characterization of poly(arylene ether) s proton exchange membranes with sulfonic groups attached on pendent naphthyl rings[J]. Acta Polymerica Sinica, 2014(3): 326-332. | |
11 | 沈斌, 汪称意, 徐常, 等 . 一类侧链型磺化聚芳醚砜质子交换膜的合成及表征[J]. 高分子学报, 2016(10): 1409-1417. |
SHEN Bin , WANG Chenyi , XU Chang , et al . Synthesis and characterization of a side-chain type sulfonated poly(arylene ether sulfone)s for proton exchange membranes[J].Acta Polymerica Sinica, 2016(10): 1409-1417. | |
12 | 孙园园, 吴雪梅, 甄栋兴, 等 . 静电层层自组装改性SPPESK/PWA质子交换膜[J]. 化工进展, 2015, 34(12): 4285-4289. |
SUN Yuanyuan , WU Xuemei , ZHEN Dongxing , et al . Modification of SPPESK/PWA proton exchange membrane by layer-by-layer self-assembly[J]. Chemical Industry and Engineering Progress, 2015, 34(12): 4285-4289. | |
13 | DAI H , ZHANG H , LUO Q , et al . Properties and fuel cell performance of proton exchange membranes prepared from disulfonated poly(sulfide sulfone)[J]. Journal of Power Sources, 2008, 185(1): 19-25. |
14 | WILES K B , WANG F , MCGRATH J E . Directly copolymerized poly(arylene sulfide sulfone) disulfonated copolymers for PEM-based fuel cell systems. Ⅰ. Synthesis and characterization[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2005, 43(43): 2964-2976. |
15 | BAI Z W , HOUTZ M D , MIRAU P A , et al . Structures and properties of highly sulfonated poly(arylenethioethersulfone)s as proton exchange membranes[J]. Polymer, 2007, 48(22): 6598-6604. |
16 | NORDDIN M N A M , ISMAIL A F , RANA D , et al . The effect of blending sulfonated poly(ether ether ketone) with various charged surface modifying macromolecules on proton exchange membrane performance[J]. Journal of Membrane Science, 2009, 328(1): 148-155. |
17 | ZHAO Y , JIANG Z , LIN D , et al . Enhanced proton conductivity of the proton exchange membranes by the phosphorylated silica submicrospheres[J]. Journal of Power Sources, 2013, 224(15): 28-36. |
18 | LI X G , SHAO H T , BAI H , et al . High-resolution thermogravimetry of polyethersulfone chips in four atmospheres[J]. Journal of Applied Polymer Science, 2010, 90(13): 3631-3637. |
19 | WEI Y C , SHANG Y B , ZHANG H Y , et al . Modified nanocrystal cellulose/fluorene-containing sulfonated poly(ether ether ketone ketone) composites for proton exchange membranes[J]. Applied Surface Science, 2017, 416(15): 996-1006. |
20 | SHEN L , XIAO G , SUN G . Sulfonated poly(arylene thioether ketone ketone sulfone)s for proton exchange membranes with high oxidative stability[J]. E-Polymers, 2005, 5(1): 321-330. |
21 | PARNIAN M J , ROWSHANZAMIR S , GASHOUL F . Comprehensive investigation of physicochemical and electrochemical properties of sulfonated poly(ether ether ketone) membranes with different degrees of sulfonation for proton exchange membrane fuel cell applications[J]. Energy, 2017, 125(15): 614-628 |
22 | TAKIMOTO N , WU L , OHIRA A , et al . Hydration behavior of perfluorinated and hydrocarbon-type proton exchange membranes: relationship between morphology and proton conduction[J]. Polymer, 2009, 50(2): 534-540. |
23 | MOLLÁ S , COMPAÑ V . Nanocomposite SPEEK-based membranes for direct methanol fuel cells at intermediate temperatures[J]. Journal of Membrane Science, 2015, 492(15): 123-136. |
24 | HASANI-SADRABADI M M , DASHTIMOGHADAM E , SARIKHANI K , et al . Electrochemical investigation of sulfonated poly(ether ether ketone)/clay nanocomposite membranes for moderate temperature fuel cell applications[J]. Journal of Power Sources, 2010, 195(9): 2450-2456. |
25 | FENG S , SHEN K , WANG Y , et al . Concentrated sulfonated poly(ether sulfone)s as proton exchange membranes[J]. Journal of Power Sources, 2013, 224(15): 42-49. |
26 | LIN H L , YU T L , HUANG C H , et al . Morphology study of Nafion membranes prepared by solutions casting[J]. Journal of Polymer Science Part B: Polymer Physics, 2010, 43(21): 3044-3057. |
27 | WANG J , JIANG S , ZHANG H , et al . Enhancing proton conduction and methanol barrier performance of sulfonated poly(ether ether ketone) membrane by incorporated polymer carboxylic acid spheres[J]. Journal of Membrane Science, 2010, 364(1): 253-262. |
[1] | GAO Weitao, YIN Qinan, TU Ziqiang, GONG Fan, LI Yang, XU Hong, WANG Cheng, MAO Zongqiang. Proton transport in metal-organic frameworks and their applications in proton exchange membranes [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 260-268. |
[2] | HU Bing, XU Lijun, HE Shan, SU Xin, WANG Jiwei. Researching progress of hydrogen production by PEM water electrolysis under the goal of carbon peak and carbon neutrality [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4595-4604. |
[3] | WAN Nianfang. Research progress of membrane electrode assembly of proton exchange membrane water electrolysis for hydrogen production [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6385-6394. |
[4] | LI Zhenghan, TU Zhengkai. Research progress of simulation models of proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5272-5296. |
[5] | LI Yunfei, WANG Zhipeng, DUAN Lei, CHEN Liang, XU Shoudong, ZHANG Ding, DUAN Donghong, LIU Shibin. Research progress of ordered membrane electrode assembly for proton exchange membrane fuel cells [J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 101-110. |
[6] | WANG Minjian, CHEN Siguo, SHAO Minhua, WEI Zidong. Recent advances of electrocatalysts in hydrogen fuel cells [J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4948-4961. |
[7] | LI Jinsheng, GE Junjie, LIU Changpeng, XING Wei. Review on high temperature proton exchange membranes for fuel cell [J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4894-4903. |
[8] | LIAO Peiyi, YANG Daijun, MING Pingwen, XUE Mingzhe, LI Bing, ZHANG Cunman. Research progress of gas-liquid two-phase flow in micro-channel and its application in PEMFC [J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4734-4748. |
[9] | HE Zexing, SHI Chengxiang, CHEN Zhichao, PAN Lun, HUANG Zhenfeng, ZHANG Xiangwen, ZOU Jijun. Development status and prospects of proton exchange membrane water electrolysis [J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4762-4773. |
[10] | LUO Huiling, SHAO Zhufeng, WANG Shubo, XU Xianlin. Preparation and performance of CC3 immobilized PAN nanofibers and its modified Nafion hybrid proton exchange membrane [J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3854-3861. |
[11] | HE Jing, WANG Xiaojiang, ZHANG Shuomeng, HE Qinggang. Application of atomic force microscopy in the surface/interface phenomena of proton exchange membrane fuel cells [J]. Chemical Industry and Engineering Progress, 2021, 40(6): 2993-3004. |
[12] | Xiaomin LIU, Bangqiang ZHANG, Bin AI, Yanmei YANG, Juan WANG, Haibo YANG, Hong CAI, Wei BAO. Development and current status of hydrogen quality standards for proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2021, 40(2): 703-708. |
[13] | Ziqian WANG, Linlin YANG, Hai SUN. Degradation mechanism and mitigation strategy of high temperature proton exchange membrane fuel cells—Part Ⅱ: Operation conditions [J]. Chemical Industry and Engineering Progress, 2021, 40(1): 111-129. |
[14] | Zexue DU. Application advances of manufacturing technology for key materials of vehicle fuel cell stack [J]. Chemical Industry and Engineering Progress, 2021, 40(1): 6-20. |
[15] | Ziqian WANG, Linlin YANG, Hai SUN. Degradation mechanism and mitigation strategy of high temperature proton exchange membrane fuel cells—part Ⅰ: materials [J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2370-2389. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 432
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 309
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |