Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (04): 1688-1695.DOI: 10.16085/j.issn.1000-6613.2018-1364
• Resources and environmental engineering • Previous Articles Next Articles
Xin GU1(),Zhiyang ZHENG1,Yuankun LUO1,Xiaochao XIONG1,Dabo ZHANG2()
Received:
2018-07-04
Revised:
2018-09-21
Online:
2019-04-05
Published:
2019-04-05
Contact:
Dabo ZHANG
通讯作者:
张大波
作者简介:
古新(1978—),男,博士,副教授,研究方向为新型高效节能换热设备。E-mail:<email>guxin@zzu.edu.cn</email>。|张大波,硕士,高级工程师,研究方向为烟卷工艺。E-mail:<email>zhangdabo1979@126.com</email>。
基金资助:
CLC Number:
Xin GU, Zhiyang ZHENG, Yuankun LUO, Xiaochao XIONG, Dabo ZHANG. Optimization on shell side structure of twisty flow heat exchanger based on orthogonal experiment[J]. Chemical Industry and Engineering Progress, 2019, 38(04): 1688-1695.
古新, 郑志阳, 罗元坤, 熊晓朝, 张大波. 基于正交试验的扭转流换热器壳程结构优化[J]. 化工进展, 2019, 38(04): 1688-1695.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-1364
筒体内径 /mm | 换热管尺寸 /mm | 管孔中心距离 /mm | 换热管数量 | 布管方式 | 相邻两组导流板间距 /mm | 导流板倾斜角度 /(°) | 换热管长度 /mm |
---|---|---|---|---|---|---|---|
?235 | φ19×2 | 25 | 61 | 三角形 | 100 | 45 | 200 |
筒体内径 /mm | 换热管尺寸 /mm | 管孔中心距离 /mm | 换热管数量 | 布管方式 | 相邻两组导流板间距 /mm | 导流板倾斜角度 /(°) | 换热管长度 /mm |
---|---|---|---|---|---|---|---|
?235 | φ19×2 | 25 | 61 | 三角形 | 100 | 45 | 200 |
水平 | 模拟因素 | |||
---|---|---|---|---|
相邻两组导流板间距 /mm | 导流板宽度 /mm | 导流板倾斜角度/(°) | 每组导流板 数量/块 | |
1 | 100 | 80 | 30.0 | 2 |
2 | 125 | 85 | 37.5 | 3 |
3 | 150 | 90 | 45.0 | 4 |
4 | 175 | 95 | 52.5 | 5 |
5 | 200 | 100 | 60.0 | 6 |
水平 | 模拟因素 | |||
---|---|---|---|---|
相邻两组导流板间距 /mm | 导流板宽度 /mm | 导流板倾斜角度/(°) | 每组导流板 数量/块 | |
1 | 100 | 80 | 30.0 | 2 |
2 | 125 | 85 | 37.5 | 3 |
3 | 150 | 90 | 45.0 | 4 |
4 | 175 | 95 | 52.5 | 5 |
5 | 200 | 100 | 60.0 | 6 |
试验 | 相邻两组导流板间距 /mm | 导流板宽度 /mm | 导流板倾斜角度 /(°) | 每组导流板数量 /块 | 数值计算结果 | ||
---|---|---|---|---|---|---|---|
?p /Pa·m-1 | α /W·m-2·K-1 | Nu /f 1/3 | |||||
1 | 100 | 80 | 30.0 | 2 | 2915.5 | 3124.6 | 112.2 |
2 | 100 | 85 | 37.5 | 3 | 3674 | 3292.2 | 111.1 |
3 | 100 | 90 | 45.0 | 4 | 3231 | 3111.8 | 107.1 |
4 | 100 | 95 | 52.5 | 5 | 2534.5 | 2860.2 | 104.5 |
5 | 100 | 100 | 60.0 | 6 | 2076.1 | 2691.3 | 102.4 |
6 | 125 | 80 | 37.5 | 4 | 2970.3 | 2876.7 | 98.1 |
7 | 125 | 85 | 45.0 | 5 | 2398.5 | 2694.1 | 97.4 |
8 | 125 | 90 | 52.5 | 6 | 2096.6 | 2783.5 | 105.6 |
9 | 125 | 95 | 60.0 | 2 | 678.9 | 2059.9 | 101.6 |
10 | 125 | 100 | 30.0 | 3 | 5363 | 3268.1 | 99.5 |
11 | 150 | 80 | 45.0 | 6 | 2275 | 2588.4 | 93.2 |
12 | 150 | 85 | 52.5 | 2 | 677.5 | 2128.5 | 105.2 |
13 | 150 | 90 | 60.0 | 3 | 694.8 | 2052.5 | 99.4 |
14 | 150 | 95 | 30.0 | 4 | 4894.4 | 3095.1 | 94.6 |
15 | 150 | 100 | 37.5 | 5 | 4506.3 | 3027.1 | 96.1 |
16 | 175 | 80 | 52.5 | 3 | 789.4 | 2077.1 | 97.6 |
17 | 175 | 85 | 60.0 | 4 | 618.8 | 1945.7 | 96.2 |
18 | 175 | 90 | 30.0 | 5 | 5012.7 | 2857.5 | 85.5 |
19 | 175 | 95 | 37.5 | 6 | 2672.9 | 2695.4 | 93.9 |
20 | 175 | 100 | 45.0 | 2 | 991.2 | 2317.4 | 104.7 |
21 | 200 | 80 | 60.0 | 5 | 591.9 | 2007.9 | 99.3 |
22 | 200 | 85 | 30.0 | 6 | 1802.4 | 2321.4 | 87.2 |
23 | 200 | 90 | 37.5 | 2 | 1154.9 | 2302.9 | 100.2 |
24 | 200 | 95 | 45.0 | 3 | 1214.5 | 2204.2 | 92.7 |
25 | 200 | 100 | 52.5 | 4 | 998.3 | 2350.2 | 105.9 |
试验 | 相邻两组导流板间距 /mm | 导流板宽度 /mm | 导流板倾斜角度 /(°) | 每组导流板数量 /块 | 数值计算结果 | ||
---|---|---|---|---|---|---|---|
?p /Pa·m-1 | α /W·m-2·K-1 | Nu /f 1/3 | |||||
1 | 100 | 80 | 30.0 | 2 | 2915.5 | 3124.6 | 112.2 |
2 | 100 | 85 | 37.5 | 3 | 3674 | 3292.2 | 111.1 |
3 | 100 | 90 | 45.0 | 4 | 3231 | 3111.8 | 107.1 |
4 | 100 | 95 | 52.5 | 5 | 2534.5 | 2860.2 | 104.5 |
5 | 100 | 100 | 60.0 | 6 | 2076.1 | 2691.3 | 102.4 |
6 | 125 | 80 | 37.5 | 4 | 2970.3 | 2876.7 | 98.1 |
7 | 125 | 85 | 45.0 | 5 | 2398.5 | 2694.1 | 97.4 |
8 | 125 | 90 | 52.5 | 6 | 2096.6 | 2783.5 | 105.6 |
9 | 125 | 95 | 60.0 | 2 | 678.9 | 2059.9 | 101.6 |
10 | 125 | 100 | 30.0 | 3 | 5363 | 3268.1 | 99.5 |
11 | 150 | 80 | 45.0 | 6 | 2275 | 2588.4 | 93.2 |
12 | 150 | 85 | 52.5 | 2 | 677.5 | 2128.5 | 105.2 |
13 | 150 | 90 | 60.0 | 3 | 694.8 | 2052.5 | 99.4 |
14 | 150 | 95 | 30.0 | 4 | 4894.4 | 3095.1 | 94.6 |
15 | 150 | 100 | 37.5 | 5 | 4506.3 | 3027.1 | 96.1 |
16 | 175 | 80 | 52.5 | 3 | 789.4 | 2077.1 | 97.6 |
17 | 175 | 85 | 60.0 | 4 | 618.8 | 1945.7 | 96.2 |
18 | 175 | 90 | 30.0 | 5 | 5012.7 | 2857.5 | 85.5 |
19 | 175 | 95 | 37.5 | 6 | 2672.9 | 2695.4 | 93.9 |
20 | 175 | 100 | 45.0 | 2 | 991.2 | 2317.4 | 104.7 |
21 | 200 | 80 | 60.0 | 5 | 591.9 | 2007.9 | 99.3 |
22 | 200 | 85 | 30.0 | 6 | 1802.4 | 2321.4 | 87.2 |
23 | 200 | 90 | 37.5 | 2 | 1154.9 | 2302.9 | 100.2 |
24 | 200 | 95 | 45.0 | 3 | 1214.5 | 2204.2 | 92.7 |
25 | 200 | 100 | 52.5 | 4 | 998.3 | 2350.2 | 105.9 |
水平 | 传热系数α/W·m-2·K-1 | |||
---|---|---|---|---|
相邻两组导流板间距 /mm | 导流板 宽度/mm | 导流板 倾斜角度 /(°) | 每组导流板 数量/块 | |
均值1 | 3016.1 | 2534.9 | 2933.3 | 2406.7 |
均值2 | 2736.5 | 2466.4 | 2838.8 | 2578.8 |
均值3 | 2578.3 | 2621.6 | 2583.2 | 2675.9 |
均值4 | 2378.6 | 2582.9 | 2439.9 | 2689.3 |
均值5 | 2237.3 | 2750.8 | 2151.4 | 2616.1 |
极差 | 778.7 | 284.4 | 781.9 | 282.6 |
水平 | 传热系数α/W·m-2·K-1 | |||
---|---|---|---|---|
相邻两组导流板间距 /mm | 导流板 宽度/mm | 导流板 倾斜角度 /(°) | 每组导流板 数量/块 | |
均值1 | 3016.1 | 2534.9 | 2933.3 | 2406.7 |
均值2 | 2736.5 | 2466.4 | 2838.8 | 2578.8 |
均值3 | 2578.3 | 2621.6 | 2583.2 | 2675.9 |
均值4 | 2378.6 | 2582.9 | 2439.9 | 2689.3 |
均值5 | 2237.3 | 2750.8 | 2151.4 | 2616.1 |
极差 | 778.7 | 284.4 | 781.9 | 282.6 |
水平 | 压降Δp/Pa·m-1 | |||
---|---|---|---|---|
相邻两组导流板间距 /mm | 导流板 宽度/mm | 导流板 倾斜角度/(°) | 每组导流板 数量/块 | |
均值1 | 2886.2 | 1908.4 | 3997.6 | 1883.6 |
均值2 | 2701.5 | 2134.2 | 2995.7 | 2347.1 |
均值3 | 2609.6 | 2438.1 | 2022.1 | 2542.5 |
均值4 | 2017.1 | 2599.1 | 1419.3 | 2708.8 |
均值5 | 1152.4 | 2787.1 | 932.1 | 2184.6 |
极差 | 1733.8 | 878.5 | 3065.5 | 825.1 |
水平 | 压降Δp/Pa·m-1 | |||
---|---|---|---|---|
相邻两组导流板间距 /mm | 导流板 宽度/mm | 导流板 倾斜角度/(°) | 每组导流板 数量/块 | |
均值1 | 2886.2 | 1908.4 | 3997.6 | 1883.6 |
均值2 | 2701.5 | 2134.2 | 2995.7 | 2347.1 |
均值3 | 2609.6 | 2438.1 | 2022.1 | 2542.5 |
均值4 | 2017.1 | 2599.1 | 1419.3 | 2708.8 |
均值5 | 1152.4 | 2787.1 | 932.1 | 2184.6 |
极差 | 1733.8 | 878.5 | 3065.5 | 825.1 |
水平 | 综合性能(PEC) | |||
---|---|---|---|---|
相邻两组导流板间距 /mm | 导流板 宽度/mm | 导流板 倾斜角度 /(°) | 每组导流板 数量/块 | |
均值1 | 107.4 | 100.1 | 95.8 | 104.8 |
均值2 | 100.4 | 99.4 | 99.9 | 100.1 |
均值3 | 97.7 | 99.6 | 99.1 | 100.4 |
均值4 | 95.6 | 97.5 | 103.8 | 96.5 |
均值5 | 97.1 | 101.7 | 99.8 | 96.5 |
极差 | 11.8 | 4.2 | 7.9 | 8.3 |
水平 | 综合性能(PEC) | |||
---|---|---|---|---|
相邻两组导流板间距 /mm | 导流板 宽度/mm | 导流板 倾斜角度 /(°) | 每组导流板 数量/块 | |
均值1 | 107.4 | 100.1 | 95.8 | 104.8 |
均值2 | 100.4 | 99.4 | 99.9 | 100.1 |
均值3 | 97.7 | 99.6 | 99.1 | 100.4 |
均值4 | 95.6 | 97.5 | 103.8 | 96.5 |
均值5 | 97.1 | 101.7 | 99.8 | 96.5 |
极差 | 11.8 | 4.2 | 7.9 | 8.3 |
1 | 付磊, 曾燚林, 唐克伦, 等 .管壳式换热器壳程流体流动与传热数值模拟[J]. 压力容器, 2012, 29(5): 36-41. |
FU Lei , ZENG Yilin , TANG Kelun , et al .Numerical simulation study of shell-side fluid flow and heat transfer in shell-and-tube heat exchanger[J].Pressure Vessel Technology, 2012, 29(5): 36-41. | |
2 | SALAHUDDIN U , BILAL M , EJAZ H .A review of the advancements made in helical baffles used in shell and tube heat exchangers[J].International Communications in Heat & Mass Transfer, 2015, 67: 104-108. |
3 | 耿伟轩, 张红, 陶汉中, 等 .管板间隙对管壳式换热器流动与传热的影响研究[J].压力容器, 2012, 29(5): 10-14, 51. |
GENG Weixuan , ZHANG Hong , TAO Hanzhong , et al . Study on the Influence of baffle-tube clearance on the fluid flow and heat transfer of shell and tube heat exchanger[J].Pressure Vessel Technology, 2012, 29(5): 10-14, 51. | |
4 | RAJA M , VIJAYAN R , DINESHKUMAR P , et al .Review on nanofluids characterization, heat transfer characteristics and applications[J]. Renewable & Sustainable Energy Reviews, 2016, 64: 163-173. |
5 | 肖武, 史朝霞, 姜晓滨, 等 . 考虑管壳式换热器传热强化的换热网络综合研究进展[J]. 化工进展, 2018, 37(4): 1267-1275. |
XIAO Wu , SHI Zhaoxia , JIANG Xiaobin , et al . Research progress on heat exchanger network considering heat transfer enhancement of shell-and-tube exchangers [J]. Chemical Industry and Engineering Progress, 2018, 37(4): 1267-1275. | |
6 | MAJUMDER M , BARMAN R N , ROY U . Designing configuration of shell-and-tube heat exchangers using grey wolf optimisation technique[J]. International Journal of Automation & Control, 2017, 11(3): 274. |
7 | 古新 . 管壳式换热器数值模拟与斜向流换热器研究[D]. 郑州: 郑州大学, 2006. |
GU Xin . Numerical simulation of shell-and-tube heat exchanger and research on side ling-flow heat exchanger[D]. Zhengzhou: Zhengzhou University, 2006. | |
8 | SALEH K , AUTE V , RADERMACHER R , et al . Chevron plate heat exchanger optimization using efficient approximation-assisted multi-objective optimization techniques[J]. Hvac & R Research, 2013, 19(7): 788-799. |
9 | 王思莹, 李卫红 . 基于有限元的对管壳式换热器管板的优化设计[J]. 化工技术与开发, 2017, 46(12): 55-57. |
WANG Siying , LI Weihong . Optimization design of tube plate for tube and tube shell heat exchanger based on finite element[J]. Technology & Development of Chemical Industry, 2017, 46(12): 55-57. | |
10 | PATEL V K , RAO R V . Design optimization of shell-and-tube heat exchanger using particle swarm optimization technique[J]. Applied Thermal Engineering, 2010, 30(11): 1417-1425. |
11 | 李青, 孟玮, 王鹏 . 基于Fluent的管壳式换热器数值模拟及优化[J]. 电子机械工程, 2016, 32(4): 27-31, 53. |
LI Qing , MENG Wei , WANG Peng . Numerical simulation and optimization of tube-and-shell heat exchanger based on fluent[J]. Electro-Mechanical Engineering, 2016, 32(4): 27-31, 53. | |
12 | 王斯民, 王萌萌, 顾昕, 等, 螺旋折流板换热器结构参数多目标优化的数值模拟 [J]. 西安交通大学学报, 2015, 49(11): 14-19, 109. |
WANG S M , WANG M M , GU X , et al . Multi-objective optimization on the structural parameters of shell-and-tube heat exchanger with helical baffles[J]. Journal of Xi'an Jiaotong University, 2015, 49(11): 14-19, 109. | |
13 | 刘景成, 张树有, 徐敬华, 等 . 板翅换热器导流结构非线性映射与性能多目标优化[J]. 化工学报, 2015, 66(5): 1821-1830. |
LIU Jingcheng , ZHANG Shuyou , XU Jinghua , et al . Non-linear mapping and multi-objective optimization of leading flow structure in plate-fin heat exchanger[J]. CIESC Journal, 2015, 66(5): 1821-1830. | |
14 | MIRZAEI M , HAJABDOLLAHI H , FADAKAR H . Multi-objective optimization of shell-and-tube heat exchanger by constructal theory[J]. Applied Thermal Engineering, 2017, 125: 9-19. |
15 | 张蒙蒙, 王珂, 王永庆, 等 . 基于正交试验设计的CO2微通道气冷器流量分配研究[J]. 化工设备与管道, 2015, 52(2): 38-43. |
ZHANG Mengmeng , WANG Ke , WANG Yongqing , et al . Research on flow distribution of CO2 micro channel gas cooler based on orthogonal test design[J]. Chemical Equipment and Piping, 2015, 52(2): 38-43. | |
16 | CELIK N , PUSAT G , TURGUT E . Application of Taguchi method and grey relational analysis on a turbulated heat exchanger[J]. International Journal of Thermal Sciences, 2018, 124: 85-97. |
17 | 陈宗毅, 何林 . 基于正交试验的钎焊板式换热器优化设计[J]. 现代机械, 2015(1): 25-27, 53. |
CHEN Zongyi , HE Lin . An optimal design of brazed plate heat exchanger based on orthogonal experiment[J]. Modern Machinery, 2015(1): 25-27, 53. | |
18 | SHIH Y , SHIAH S , LIN C , et al . Performance study of a compact heat exchanger with fin-tube core[J]. ACRA 2016—8th Asian Conference on Refrigeration and Air-Conditioning, 2016, 13(5): 16-21. |
19 | 古新, 罗元坤, 熊晓朝, 等 . 扭转流换热器结构参数对流场和温度场的影响[J]. 化工学报, 2018, 69(8): 3390-3397. |
GU Xin , LUO Yuankun , XIONG Xiaochao , et al . Influence of twisty flow heat exchanger's structural parameters on flow field and temperature field [J]. CIESC Journal, 2018, 69(8): 3390-3397. | |
20 | 刘瑞江, 张业旺, 汤建, 等 . 正交试验设计和分析方法研究[J]. 实验技术与管理, 2010, 27(9): 52-55. |
LIU Ruijiang , ZHANG Yewang , WEN Chongwei , et al . Study on the design and analysis methods of orthogonal experiment[J]. Experimental Technology and Management, 2010, 27(9): 52-55. | |
21 | 古新, 董其伍, 刘敏珊 . 周期性模型在管壳式换热器数值模拟中的应用[J]. 热能动力工程, 2008(1): 64-68, 107-108. |
GU Xin , DONG Qiwu , LIU Minshan . Application of a periodic model in the numerical simulation of shell-and-tube heat exchangers[J]. Journal of Engineering for Thermal Energy & Power, 2008(1): 64-68, 107-108. | |
22 | 梁忠伟, 周俊辉, 刘晓初, 等 . 基于正交实验的空调换热器流场模拟及性能分析[J]. 广州大学学报(自然科学版), 2015, 14(6): 69-77. |
LIANG Zhongwei , ZHOU Junhui , LIU Xiaochu , et al . Flow field simulation and performance analysis of heat exchanger in air conditioning system based on orthogonal experiment[J]. Journal of Guangzhou University(Natural Science Edition), 2015, 14(6): 69-77. |
[1] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[2] | SHAO Boshi, TAN Hongbo. Simulation on the enhancement of cryogenic removal of volatile organic compounds by sawtooth plate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 84-93. |
[3] | WANG Tai, SU Shuo, LI Shengrui, MA Xiaolong, LIU Chuntao. Dynamic behavior of single bubble attached to the solid wall in the AC electric field [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 133-141. |
[4] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[5] | YANG Yudi, LI Wentao, QIAN Yongkang, HUI Junhong. Analysis of influencing factors of natural gas turbulent diffusion flame length in industrial combustion chamber [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 267-275. |
[6] | CHEN Lin, XU Peiyuan, ZHANG Xiaohui, CHEN Jie, XU Zhenjun, CHEN Jiaxiang, MI Xiaoguang, FENG Yongchang, MEI Deqing. Investigation on the LNG mixed refrigerant flow and heat transfer characteristics in coil-wounded heat exchanger (CWHE) system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4496-4503. |
[7] | LIU Xuanlin, WANG Yikai, DAI Suzhou, YIN Yonggao. Analysis and optimization of decomposition reactor based on ammonium carbamate in heat pump [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4522-4530. |
[8] | ZHAO Xi, MA Haoran, LI Ping, HUANG Ailing. Simulation analysis and optimization design of mixing performance of staggered impact micromixer [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4559-4572. |
[9] | YE Zhendong, LIU Han, LYU Jing, ZHANG Yaning, LIU Hongzhi. Optimization of thermochemical energy storage reactor based on calcium and magnesium binary salt hydrates [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4307-4314. |
[10] | YU Junnan, YU Jianfeng, CHENG Yang, QI Yibo, HUA Chunjian, JIANG Yi. Performance prediction of variable-width microfluidic concentration gradient chips by deep learning [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3383-3393. |
[11] | SHAN Xueying, ZHANG Meng, ZHANG Jiafu, LI Lingyu, SONG Yan, LI Jinchun. Numerical simulation of combustion of flame retardant epoxy resin [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3413-3419. |
[12] | WANG Shuo, ZHANG Yaxin, ZHU Botao. Prediction of erosion life of coal water slurry pipeline based on grey prediction model [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3431-3442. |
[13] | ZHOU Longda, ZHAO Lixin, XU Baorui, ZHANG Shuang, LIU Lin. Advances in electrostatic-cyclonic coupling enhanced multiphase media separation research [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3443-3456. |
[14] | LU Xingfu, DAI Bo, YANG Shiliang. Super-quadric discrete element method investigation of mixing behaviors of cylindrical particles in a rotating drum [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2252-2261. |
[15] | ZHANG Chenyu, WANG Ning, XU Hongtao, LUO Zhuqing. Performance evaluation of the multiple layer latent heat thermal energy storage unit combined with nanoparticle for heat transfer enhancement [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2332-2342. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |