Chemical Industry and Engineering Progree ›› 2016, Vol. 35 ›› Issue (01): 110-124.DOI: 10.16085/j.issn.1000-6613.2016.01.015
Previous Articles Next Articles
MAIMAITIMING Aizezi
Received:
2015-04-27
Revised:
2015-07-01
Online:
2016-01-05
Published:
2016-01-05
艾则孜·麦麦提明
通讯作者:
艾则孜·麦麦提明(1986-),男,硕士研究生,从事聚烯烃产品工程研究。E-mail:21128097@zju.edu.cn。
作者简介:
艾则孜·麦麦提明(1986-),男,硕士研究生,从事聚烯烃产品工程研究。E-mail:21128097@zju.edu.cn。
基金资助:
CLC Number:
MAIMAITIMING Aizezi. Progress in advanced single site catalysts for preparing all series polyolefin materials[J]. Chemical Industry and Engineering Progree, 2016, 35(01): 110-124.
艾则孜·麦麦提明. 制备全系列聚烯烃材料的高性能单活性中心催化剂研究进展[J]. 化工进展, 2016, 35(01): 110-124.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2016.01.015
[1] CHUM P S, SWOGGER K W. Olefin polymer technologies——history and recent progress at the Dow Chemical Company[J]. Prog. Polym. Sci.,2008,33:797-819. [2] SINCLAIR K B. Future trends in polyolefin materials[J]. Macromol. Symp.,2001,173:237-261. [3] Dow Global Technologies INC. High temperature polyethylene solution polymerization process:US2012/0108770A1[P]. 2012-05-03. [4] Mitsui Chemicals INC. Process for producing olefin polymers:US2006/0270812A1[P]. 2006-11-30. [5] ExxonMobil Chemical Company. Process for making ethylene interpolymers and interpolymers made thereby:compositions and electrical devices containing such interpolymers:US2005/0215737A1[P]. 2005-09-29. [6] SENDA T,HANAOKA H,OKADO Y,et al. Titanium complexes of silicon-bridged cyclopentadienyl-phenoxy ligands modified with fused-thiophene:synthesis,characterization,and their catalytic performance in copolymerization of ethylene and1-hexene[J]. Organometallics,2009,28:6915-6926. [7] BOUSSIE T R,DIAMOND G M,GOH C,et al. A fully integrated high-throughput screening methodology for the discovery of new polyolefin catalysts:discovery of a new class of high temperature single-site group (Ⅳ) copolymerization catalysts[J]. J. Am. Chem. Soc.,2003,125:4306-4317. [8] NIFANT'EV I E,IVCHENKO P V,BAGROV V V,et al. 5-Methoxy-substituted zirconium bis-indenyl ansa-complexes:synthesis,structure,and catalytic activity in the polymerization and copolymerization of alkenes[J]. Organometallics, 2012, 31:4962-4970. [9] DIAMOND G M, HALL K A, LAPOINTE A M, et al. High-throughput discovery and optimization of hafnium heteroaryl-amido catalysts for the isospecific polymerization of propylene[J]. CS Catal.,2011,1:887-900. [10] CHEN H Y,CHUM S P,HILTNER A,et al. Comparison of semicrystalline ethylene-styrene and ethylene-octene copolymers based on comonomer content[J]. Polym. Sci.,Part B:Polym. Phys., 2001,39:1578-1593. [11] XU G X,CHENG D L. Homo-and copolymerization of 4-methyl-1-pentene and ethylene with group 4 ansa-cyclopentadienylamido complexes[J]. Macromolecules,2001,34:2040-2047. [12] STEPHENS C H,POON B C,ANSEMS P,et al. Comparison of propylene/ethylene copolymers prepared with different catalysts[J]. J. Appl. Polym. Sci.,2006,100:1651-1658. [13] ROSA C D,ODDA B R D,AURIEMMA F,et al. Polymorphic behavior and mechanical properties of isotactic1-butene-ethylene copolymers from metallocene catalysts[J]. Macromolecules,2014, 47:4317-4329. [14] ROSA C D,AURIEMMA F,VOLLARO P,et al. Crystallization behavior of propylene-butene copolymers:the trigonal form of isotactic polypropylene and form I of isotactic poly(1-butene)[J]. Macromolecules,2011,44:540-549. [15] NEDOREZOVAA P M,CHAPURINAA A V,KOVAL'CHUKA A A, et al. Copolymerization of propylene with 1-butene and 1-pentene with the isospecific catalytic system rac-Me2Si(4-Ph-2-MeInd)2 ZrCl2-MAO[J]. Poly. Sci. Series B,2012,54:1-14. [16] STAGNARO P,BORAGNO L,LOSIO S,et al. Isoselectivity and steric hindrance of C2-symmetric metallocenes as the keys to control structural and thermal features of ethene/4-methyl-1-pentene copolymers[J]. Macromolecules,2011,44:3712-3722. [17] ARNOLD M,BORNEMANN S,KOLLER F,et al. Synthesis and characterization of branched polypropenes obtained by metallocene catalysis[J]. Macromol. Chem. Phys.,1998,199:2647-2653. [18] DERLIN S,KAMINSKY W. Copolymerization of ethylene and propylene with the sterically hindered monomer 3-methyl-1-butene by homogeneous catalysis[J]. Macromolecules,2007,40:4130-4137. [19] HENSCHKE O,KOLLEL F,ARNOLD M. Polyolefins with high glass transition temperatures[J]. Macromol. Rapid Commun.,1997, 18:617-623. [20] KAMINSKY W, BEULICH I, ARNDT-ROSENAU M. Copolymerization of ethene with cyclic and other sterically hindered olefins[J]. Macromol. Symp.,2001,173:211-225. [21] de ROSA C,AURIEMMA F. From entropic to enthalpic elasticity:novel thermoplastic elastomers from syndiotactic propylene-ethylene copolymers[J]. Adv. Mater.,2005,17:1503-1507. [22] de ROSA C,AURIEMMA F,CORRADI M,et al. Mechanical properties and elastic behavior of syndiotactic propene-butene copolymers[J]. Macromolecules,2009,42:4728-4738. [23] LUO Y J, BALDAMUS J, HOU Z M. Scandium half-metallocene-catalyzed syndiospecific styrene polymerization and styrene-ethylene copolymerization:unprecedented incorporation of syndiotactic styrene-styrene sequences in styrene-ethylene copolymers[J]. J. Am. Chem. Soc.,2004,126:13910-13911. [24] NOMURA K, FUKUDA H, APISUK W, et al. Ethylene copolymerization by half-titanocenes containing imidazolin-2-iminatoligands-MAO catalyst systems[J]. J. Mol. Cat. A:Chem., 2012,363/364:501-511. [25] BENSASON S,MINICK J,MOET A,et al. Classification of homogeneous ethylene-octene copolymers based on comonomer content[J]. Polym. Sci.,Part B:Polym. Phys.,1996,34:1301-1315. [26] Symyx Technologies Inc. Bridged bi-aromatic ligand catalysts, process for polymerizing and polymers therefrom:US 6897276B2[P]. 2005-05-24. [27] Exxon Chemical Patent Inc. High temperature olefin polymerization process:US005907021A[P]. 1999-05-25. [28] Dow Chemical Company. Constrained geometry addition polymerization catalysts,process for their preparation,precursors therefor,methods of use, and novel polymers therewith:EP 0416815B1[P]. 1997-08-13. [29] Dow Global Technologies LLC. High temperature solution polymerization process:US8354484B2[P]. 2013-01-15. [30] NABIKA M, KATAYANA H, WATANABE T, et al. Ansa-cyclopentadienyl-phenoxy titanium (Ⅳ) complexes (PHENICS):synthesis,characterization,and catalytic behavior in olefin polymerization[J]. Organometallics,2009,28:3785-3792. [31] NOVA Chemicals (International) S A. High temperature solution polymerization process:EP0881233A1[P]. 1998-02-12. [32] DSM IP Assets BV. Polymerization catalyst comprising an amidine ligand:WO2005/090418A1[P]. 2005-09-29. [33] SK Innovation Co. Ltd. Ethylene-propylene-diene copolymer production method:EP2377894A2[P]. 2011-10-19. [34] Equistar Chemicals L P. High temperature solution process for polyolefin manufacture:US6756455B2[P]. 2004-01-29. [35] XU G X,RUCKENSTEIN E. Ethylene copolymerization with 1-octene using a 2-methylbenz[e]indenyl-based ansamonocyclopentadienylamido complex and methylaluminoxanes catalyst[J]. Macromolecules,1998,31:4724-4729. [36] CANOA J,KUNZ K. How to synthesize a constrained geometry catalyst (CGC)-A survey[J]. J. Organomet. Chem.,2007,692:4411-4423. [37] RYABOV A N,VOSKOBOYNIKOV A Z. Constrained geometry complexes of titanium (Ⅳ) and zirconium (Ⅳ) involving cyclopentadienyl fused to thiophene ring[J]. J. Organomet. Chem., 2005,690:4213-4221. [38] GRANDINI C, CAMURATI I, GUIDOTTI S, et al. Heterocycle-fused indenyl silyl amido dimethyl titanium complexes as catalysts for high molecular weight syndiotactic amorphous polypropylene[J]. Organometallics,2004,23:344-360. [39] IRWIN L J,REIBENSPIES J H,MILLER S A. A sterically expanded "constrained geometry catalyst" for highly active olefin polymerization and copolymerization:an unyielding comonomer effect[J]. J. Am. Chem. Soc.,2004,126:16716-16717. [40] CHAI J F,ABBOUD K A,MILLER S A. Sterically expanded CGC catalysts:substituent effects on ethylene and α-olefin polymerization[J]. Dalton Trans.,2013,42:9139-9147. [41] WU C J, LEE S H, YUN H, et al. Ortho lithiation of tetrahydroquinoline derivatives and its use for the facile construction of polymerization catalysts[J]. Organometallics, 2007, 26:6685-6687. [42] WU C J,LEE S H,YU S T,et al. CO2-Mediated ortho-lithiation of N-alkylanilines and its use for the construction of polymerization catalysts[J]. Organometallics,2008,27:3907-3917. [43] TAO X,WU Q L,HUO H,et al. New titanium (IV) complexes with 2 cyclopentadienylbenzylamido ligands:synthesis,characterization, and catalytic properties for ethylene polymerization and copolymerization with 1-hexene[J]. Organometallics,2013,32:4185-4191. [44] NOMURA K. Half-titanocenes containing anionic ancillary donor ligands as promising new catalysts for precise olefin polymerization[J]. Dalton Trans.,2009:8811-8823. [45] NOMURA K,OYA K,KOMATSU T, et al. Effect of the cyclopentadienyl fragment on monomer reactivities and monomer sequence distributions in ethylene/a-olefin copolymerization by a nonbridged (cyclopentadienyl)(aryloxy)titanium(Ⅳ) complex-MAO catalyst system[J]. Macromolecules,2000,33:3187-3189. [46] NOVA Chemicals (International) S A. Catalysts having a ketimine ligand:US006114481A[P]. 2000-09-05. [47] KIM T J,KIM S K,KIM B J,et al. Half-metallocene titanium (Ⅳ) phenyl phenoxide for high temperature olefin polymerization:Ortho-substituent effect at ancillary o-phenoxy ligand for enhanced catalytic performance[J]. Macromolecules,2009,42:6932-6943. [48] NOMURA K. Half-titanocenes containing anionic ancillary donor ligands:effective catalyst precursors for ethylene/styrene copolymerization[J]. Catalysts,2013,3:157-175. [49] NOMURA K. Syndiospecific styrene polymerization and ethylene/styrene copolymerization using half-titanocenes:ligand effects and some new mechanistic aspects[J]. Catal. Surv. Asia,2010,14:33-49. [50] FRAZIER K A,FROESE R D,HE Y Y,et al. Pyridylamido hafnium and zirconium complexes:synthesis, dynamic behavior, and ethylene/1-octene and propylene polymerization reactions[J]. Organometallics,2011,30:3318-3329. [51] FONTAINE P P,FIGUEROA R,MCCANN S D,et al. Synthesis and scale-up of imino-enamido hafnium and zirconium olefin polymerization catalysts[J]. Organometallics,2013,32,2963-2972. [52] SZUROMI E,KLOSIN J,ABBOUD K A. Aminotroponiminato hafnium and zirconium complexes:synthesis and ethylene/1-octene copolymerization study[J]. Organometallics,2011,30:4589-4597. [53] FONTAINE P P, KLOSIN J, MCDOUGAL N T. Hafnium amidoquinoline complexes:highly active olefin polymerization catalysts with ultrahigh molecular weight capacity[J]. Organometallics,2012,31:6244-6251. [54] Mitsubishi Chemical Corporation. Thermoplastic elastomer composition and method for production same:WO2013/061974A1[P].2013-05-02. [55] ARRIOLA D J,BOKOTA M,CAMPBELL R E,et al. Penultimate effect in ethylene-styrene copolymerization and the discovery of highly active ethylene-styrene catalysts with increased styrene reactivity[J]. J. Am. Chem. Soc.,2007,129:7065-7076. [56] NGUYENA T D H,NGUYENA T L T,NOH S K,et al. Bridge length effect of new dinuclear constrained geometry catalysts on controlling the polymerization behaviors of ethylene/styrene copolymerization[J]. Polymer,2011,52:318-325. [57] TERAO H,IWASHITA A,ISHII S,et al. Ethylene/norbornene copolymerization behavior of bis(phenoxy-imine)Ti complexes combined with MAO[J]. Macromolecules,2009,42:4359-4361. [58] WANG C,SUN X L,GUO Y H,et al. Novel titanium catalysts bearing an[O,N,S] tridentate ligand for ethylene homo-and copolymerization[J]. Macromol. Rapid Commun., 2005, 26:1609-1614. [59] NOMURA K,FUKUDA H,KATAO S,et al. Olefin polymerization by half-titanocenes containing η2-pyrazolatoligands-MAO catalyst systems[J]. Macromolecules,2011,44:1986-1998. [60] TANG X Y,WANG Y X,LI B X,et al. Highly efficient ethylene/norbornene copolymerization by o-di(phenyl) phosphanylphenolate-based half-titanocene complexes[J]. Polym. Sci.,Part A:Polym. Chem.,2013,51:1585-1594. [61] KHAN F Z,KAKINUKI K,NOMURA K. Copolymerization of ethylene with tert-butylethylene using nonbridged half-titanocene-cocatalyst systems[J]. Macromolecules,2009,42:3767-3773. [62] NOMURA K, ITAGAKI K. Efficient incorporation of vinylcylohexane in ethylene/vinylcyclohexane copolymerization catalyzed by nonbridged half-titanocenes[J]. Macromolecules,2005, 81:8121-8123. [63] WANG W,FUJIKI M,NOMURA K. Copolymerization of ethylene with cyclohexene (CHE) catalyzed by nonbridged half-titanocenes containing aryloxo ligand:notable effect of both cyclopentadienyl and anionic donor ligand for efficient che incorporation[J]. J. Am. Chem. Soc.,2005,127:4582-4583. [64] HEUER B,KAMINSKY W. Alternating ethene/propene copolymers by C1-symmetric metallocene/mao catalysts[J]. Macromolecules, 2005,38:3054-3059. [65] UOZUMI T,AHN C H,TOMISAKA M,et al. Synthesis of ethylene-a-olefin alternating copolymers with Et(1-Ind)(9-Flu)ZrCl2-MAO catalyst system[J]. Macromol. Chem. Phys.,2000,201:1748-1752. [66] KAMINSKY W,PIEL C. Tailoring polyolefins by metallocene catalysis:kinetic and mechanistic aspects[J]. J. Mol. Cat. A:Chem., 2004,213:15-19. [67] EWEN J A,ELDER M J,JONES R L,et al. Chiral ansa metallocenes with Cp ring-fused to thiophenes and pyrroles:syntheses,crystal structures,and isotactic polypropylene catalysts[J]. J. Am. Chem. Soc.,2001,123:4763-4773. [68] SCHOBEL A. Differences of zirconocenes and hafnocenes from low isotactic,elastic-to high isotacticity,high melting polypropylene[D]. Munchen:Technische Universitat Munchen,2012. [69] MILLER S A,BERCAW J E. Mechanism of isotactic polypropylene formation with C1-symmetricmetallocene catalysts[J]. Organometallics,2006,25:3576-3592. [70] BADER M,MARQUET N,KIRILLOV E,et al. Old and new C1symmetric group 4 metallocenes {(R1R2C)-(R2'R3'R6'R7'-Flu)(3-R3-5-R4-C5H2)}ZrCl2:from highly isotactic polypropylenes to vinyl end-capped isotactic-enriched oligomers[J]. Organometallics, 2012,31:8375-8387. [71] Dow Global Technologies INC. Isotactic propylene copolymer fibers,their preparation and use:US 6906160B2[P]. 2005-06-14. [72] IRWIN L J,MILLER S A. Unprecedented syndioselectivity and syndiotactic polyolefin melting temperature:polypropylene and poly(4-methyl-1-pentene) from a highly active,sterically expanded η1-fluorenyl-η1-amido zirconium complex[J]. J. Am. Chem. Soc., 2005,127:9972-9973. [73] Fina Technology Inc. Syndiotactic polypropylene and method of preparing same:US2008/0097052A1[P]. 2008-04-24. [74] Basell Polyolefin GmbH. BiIndenyl zirconium complexes for use in polymerization of olefins:US2006/0252637A1[P]. 2006-11-09. [75] NIFANT'EV L E,IVCHENKOV P V,BAGROV V V,et al. Asymmetric ansa-zirconocenes containing a 2-methyl-4-aryltetrahydroindacene fragment:synthesis,structure,and catalytic activity in propylene polymerization and copolymerization[J]. Organometallics,2011,30:5744-5752. [76] NIFANT'EV L E,IVCHEN V,BAGROV V V,et al. Novel effective racemoselective method for the synthesis of ansazirconocenes and its use for the preparation of C2-symmetriccomplexes based on 2-methyl-4-aryltetrahydro(s)indacene as catalysts for isotactic propylene polymerization and ethylene/propylene copolymerization[J]. Organometallics,2012,31:4340-4348. [77] RESCONI L,CAMURATI I,MALIZIA F. Metallocene catalysts for 1-butene polymerization[J]. Macromol. Chem. Phys.,2006,207:2257-2279. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[6] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[7] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[8] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[9] | GAO Yanjing. Analysis of international research trend of single-atom catalysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4667-4676. |
[10] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[11] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[12] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[13] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[14] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
[15] | XIANG Yang, HUANG Xun, WEI Zidong. Recent progresses in the activity and selectivity improvement of electrocatalytic organic synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4005-4014. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |