Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (11): 6589-6601.DOI: 10.16085/j.issn.1000-6613.2024-1514
• Resources and environmental engineering • Previous Articles
LI Yuting(
), HU Wenmei, XU Wei, MA Tinghong, QIN Qiuyuan, CHEN Shan(
)
Received:2024-09-18
Revised:2024-10-23
Online:2025-12-08
Published:2025-11-25
Contact:
CHEN Shan
李宇亭(
), 胡文梅, 徐薇, 马廷鸿, 覃秋愿, 陈山(
)
通讯作者:
陈山
作者简介:李宇亭(2001—),女,硕士研究生,研究方向为多糖基材料在环境中的应用。E-mail:1904285540@qq.com。
基金资助:CLC Number:
LI Yuting, HU Wenmei, XU Wei, MA Tinghong, QIN Qiuyuan, CHEN Shan. Research progress on source control and terminal treatment of indoor formaldehyde[J]. Chemical Industry and Engineering Progress, 2025, 44(11): 6589-6601.
李宇亭, 胡文梅, 徐薇, 马廷鸿, 覃秋愿, 陈山. 源头控制及终端处理室内甲醛的研究进展[J]. 化工进展, 2025, 44(11): 6589-6601.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1514
| 类型 | 清除剂 | 甲醛释放降低量/% | 优点 | 缺点 | 参考文献 |
|---|---|---|---|---|---|
| 三聚氰胺甲醛树脂 | 木炭 | 40 | 黏合强度、固化度提高 | 黏合性能下降 | [ |
| 大麻粉 | 34 | 抗弯强度、黏合强度提高 | 固化延长 | [ | |
| 像树皮粉 | 31 | 黏合强度提高 | 固化延长 | [ | |
| 脲醛树脂 | 杏仁壳 | 28 | 剪切强度、热稳定性均提高 | 黏合性能下降 | [ |
| 氧化铝纳米颗粒 | 14 | 刚度提高,固化速度加快 | 剪切强度下降 | [ | |
| 改性松针 | 40 | 剪切强度提高 | 黏合性能下降 | [ | |
| 丙胺 | 56 | 热稳定性提高 | 固化延长 | [ | |
| 改性纳米黏土 | 61 | 热稳定性提高、防水 | 固化延长 | [ | |
| 酚醛树脂 | 氢氧化铵 | 85 | 性能无影响 | 黏合性能下降 | [ |
| 焦亚硫酸钠 | 82 | 性能无影响 | 无 | [ | |
| 氧化石墨烯 | 60 | 剪切强度、断裂模量提高 | 黏合性能下降 | [ |
| 类型 | 清除剂 | 甲醛释放降低量/% | 优点 | 缺点 | 参考文献 |
|---|---|---|---|---|---|
| 三聚氰胺甲醛树脂 | 木炭 | 40 | 黏合强度、固化度提高 | 黏合性能下降 | [ |
| 大麻粉 | 34 | 抗弯强度、黏合强度提高 | 固化延长 | [ | |
| 像树皮粉 | 31 | 黏合强度提高 | 固化延长 | [ | |
| 脲醛树脂 | 杏仁壳 | 28 | 剪切强度、热稳定性均提高 | 黏合性能下降 | [ |
| 氧化铝纳米颗粒 | 14 | 刚度提高,固化速度加快 | 剪切强度下降 | [ | |
| 改性松针 | 40 | 剪切强度提高 | 黏合性能下降 | [ | |
| 丙胺 | 56 | 热稳定性提高 | 固化延长 | [ | |
| 改性纳米黏土 | 61 | 热稳定性提高、防水 | 固化延长 | [ | |
| 酚醛树脂 | 氢氧化铵 | 85 | 性能无影响 | 黏合性能下降 | [ |
| 焦亚硫酸钠 | 82 | 性能无影响 | 无 | [ | |
| 氧化石墨烯 | 60 | 剪切强度、断裂模量提高 | 黏合性能下降 | [ |
| 胶黏剂类型 | 优势 | 弊端 | 参考文献 | |
|---|---|---|---|---|
| 甲醛基胶黏剂 | ||||
| 脲醛树脂 | 使用方便、固化温度低、硬度高、热性能好 | 耐用性差 | [ | |
| 酚醛树脂 | 高附着力、耐磨性高、热稳定性和化学稳定性良好 | 成本高、保质期短、毒性大、固化温度高 | [ | |
| 三聚氰胺甲醛树脂 | 附着力好、耐水性好、热稳定性高、易固化、阻燃 | 成本高、韧性低、储存稳定性有限 | [ | |
| 无甲醛基胶黏剂 | ||||
| 蛋白质基 | 环保、成本低、可生物降解、干黏合强度好 | 耐水性差,固化率低,易发霉、黏合强度低 | [ | |
| 淀粉基 | 无毒、成本低、抗污性好、干黏合强度好、稳定性好 | 耐水性差、初始附着力低、易发霉 | [ | |
| 木质素基 | 来源丰富、环保、可再生、低成本、热稳定性好 | 可变性高,性能不稳定 | [ | |
| 单宁基 | 来源丰富、环保、可再生、成本低、固化快 | 剪切强度低、耐水性差、保质期短 | [ | |
| 胶黏剂类型 | 优势 | 弊端 | 参考文献 | |
|---|---|---|---|---|
| 甲醛基胶黏剂 | ||||
| 脲醛树脂 | 使用方便、固化温度低、硬度高、热性能好 | 耐用性差 | [ | |
| 酚醛树脂 | 高附着力、耐磨性高、热稳定性和化学稳定性良好 | 成本高、保质期短、毒性大、固化温度高 | [ | |
| 三聚氰胺甲醛树脂 | 附着力好、耐水性好、热稳定性高、易固化、阻燃 | 成本高、韧性低、储存稳定性有限 | [ | |
| 无甲醛基胶黏剂 | ||||
| 蛋白质基 | 环保、成本低、可生物降解、干黏合强度好 | 耐水性差,固化率低,易发霉、黏合强度低 | [ | |
| 淀粉基 | 无毒、成本低、抗污性好、干黏合强度好、稳定性好 | 耐水性差、初始附着力低、易发霉 | [ | |
| 木质素基 | 来源丰富、环保、可再生、低成本、热稳定性好 | 可变性高,性能不稳定 | [ | |
| 单宁基 | 来源丰富、环保、可再生、成本低、固化快 | 剪切强度低、耐水性差、保质期短 | [ | |
| 控制方法 | 优点 | 缺点 | 参考文献 | |
|---|---|---|---|---|
| 物理法 | ||||
| 通风 | 见效快 | 受季节天气影响 | [ | |
| 物理吸附 | 工艺简单、成本低 | 需定期更换 | [ | |
| 生物法 | ||||
| 植物降解 | 美观、清新空气 | 净化速度慢 | [ | |
| 植物-微生物降解 | 美观、清新空气 | 易受温度湿度影响 | [ | |
| 化学法 | ||||
| 化学吸附 | 工艺简单、成本低、应用范围广 | 需定期更换 | [ | |
| 热催化法 | 高活性、高净化效率 | 价格高 | [ | |
| 光催化法 | 高活性、高净化效率 | 价格高、受光照影响 | [ | |
| 等离子催化法 | 能耗低、净化效率高、杀菌效果好 | 设备要求高 | [ | |
| 控制方法 | 优点 | 缺点 | 参考文献 | |
|---|---|---|---|---|
| 物理法 | ||||
| 通风 | 见效快 | 受季节天气影响 | [ | |
| 物理吸附 | 工艺简单、成本低 | 需定期更换 | [ | |
| 生物法 | ||||
| 植物降解 | 美观、清新空气 | 净化速度慢 | [ | |
| 植物-微生物降解 | 美观、清新空气 | 易受温度湿度影响 | [ | |
| 化学法 | ||||
| 化学吸附 | 工艺简单、成本低、应用范围广 | 需定期更换 | [ | |
| 热催化法 | 高活性、高净化效率 | 价格高 | [ | |
| 光催化法 | 高活性、高净化效率 | 价格高、受光照影响 | [ | |
| 等离子催化法 | 能耗低、净化效率高、杀菌效果好 | 设备要求高 | [ | |
| [1] | MUNDT Kenneth A, Robinan GENTRY P, DELL Linda D, et al. Six years after the NRC review of EPA’s Draft IRIS toxicological review of formaldehyde: Regulatory implications of new science in evaluating formaldehyde leukemogenicity[J]. Regulatory Toxicology and Pharmacology, 2018, 92: 472-490. |
| [2] | NA Chae-Jin, YOO Mi-Ji, TSANG Daniel C W, et al. High-performance materials for effective sorptive removal of formaldehyde in air[J]. Journal of Hazardous Materials, 2019, 366: 452-465. |
| [3] | CAO Lianying, WANG Jingxian, SHEN Jun, et al. Impact of hot-pressing parameters and climate temperature on VOC emission from particleboard[C]// 2010 4th International Conference on Bioinformatics and Biomedical Engineering. Chengdu, China: IEEE, 2010: 1-3. |
| [4] | QUE Zeli, FURUNO Takeshi, KATOH Sadanobu, et al. Effects of urea-formaldehyde resin mole ratio on the properties of particleboard[J]. Building and Environment, 2007, 42(3): 1257-1263. |
| [5] | ESMAEILI N, ZOHURIAAN-MEHR M J, MOHAJERI S, et al. Hydroxymethyl furfural-modified urea-formaldehyde resin: Synthesis and properties[J]. European Journal of Wood and Wood Products, 2017, 75(1): 71-80. |
| [6] | Ivan RUŽIAK, IGAZ Rastislav, Lubos KRIŠŤÁK, et al. Influence of urea-formaldehyde adhesive modification with beech bark on chosen properties of plywood[J]. BioResources, 2017, 12(2): 3250-3264 |
| [7] | SHALBAFAN Ali, HASSANNEJAD Hedi, RAHMANINIA Mehdi. Formaldehyde adsorption capacity of chitosan derivatives as bio-adsorbents for wood-based panels[J]. International Journal of Adhesion and Adhesives, 2020, 102: 102669. |
| [8] | GHANI Aizat, ASHAARI Zaidon, BAWON Paiman, et al. Reducing formaldehyde emission of urea formaldehyde-bonded particleboard by addition of amines as formaldehyde scavenger[J]. Building and Environment, 2018, 142: 188-194. |
| [9] | COSTA N A, PEREIRA J, FERRA J, et al. Sodium metabisulphite as a scavenger of air pollutants for wood-based building materials[J]. International Wood Products Journal, 2013, 4(4): 242-247. |
| [10] | KHORRAMABADI Leila Aadi, BEHROOZ Rabi, KAZEMI Saeed. Effects of nanoclay modification with aminopropyltriethoxysilane (APTES) on the performance of urea-formaldehyde resin adhesives[J]. Bioresources, 2023, 18(3): 5417-5434. |
| [11] | KIM Sumin, KIM Hyun-Joong, KIM Hee-Soo, et al. Effect of bio-scavengers on the curing behavior and bonding properties of melamine-formaldehyde resins[J]. Macromolecular Materials and Engineering, 2006, 291(9): 1027-1034. |
| [12] | KAWALERCZYK Jakub, SIUDA Joanna, MIRSKI Radosław, et al. Hemp flour as a formaldehyde scavenger for melamine-urea-formaldehyde adhesive in plywood production[J]. BioResources, 2020, 15(2): 4052-4064. |
| [13] | MIRSKI Radosław, KAWALERCZYK Jakub, DZIURKA Dorota, et al. The application of oak bark powder as a filler for melamine-urea-formaldehyde adhesive in plywood manufacturing[J]. Forests, 2020, 11(12): 1249. |
| [14] | CHEN Kexin, CHENG Xue, CHEN Yuzhu, et al. Thermal degradation kinetics of urea-formaldehyde resins modified by almond shells[J]. ACS Omega, 2021, 6(39): 25702-25709. |
| [15] | DE CADEMARTORI Pedro Henrique Gonzalez, ARTNER Mirela Angelita, ALVES DE FREITAS Rilton, et al. Alumina nanoparticles as formaldehyde scavenger for urea-formaldehyde resin: Rheological and in situ cure performance[J]. Composites Part B: Engineering, 2019, 176: 107281. |
| [16] | DUKARSKA Dorota, KAWALERCZYK Jakub, KMIECIAK Jakub. Modified pine needles as a formaldehyde scavenger for urea-formaldehyde resin in plywood production[J]. European Journal of Wood and Wood Products, 2024, 82(1): 147-158. |
| [17] | ASHAARI Zaidon, LEE SENG hua, ABDUL AZIZ Mohd Hafifuddin, et al. Addition of ammonium hydroxide as formaldehyde scavenger for sesenduk (Endospermum diadenum) wood compregnated using phenolic resins[J]. European Journal of Wood and Wood Products, 2016, 74(2): 277-280. |
| [18] | VIDULA Ramdugwar, HUBERT Fernandes, PRADEEP Gadekar. Study of scavengers for free formaldehyde reduction in phenolic resins used in polychloroprene based contact adhesives[J]. International Journal of Adhesion and Adhesives, 2022, 115: 103122. |
| [19] | BENHAMOU Anass AIT, SALIM Mohamed Hamid, BOUSSETTA Abdelghani, et al. Graphene oxide a promising formaldehyde scavenger of phenolic resin-bonded plywood: From elaboration to evaluation[J]. Journal of Applied Polymer Science, 2024, 141(11): e55093. |
| [20] | SIIMER Kadri, KALJUVEE Tiit, Tõnis PEHK, et al. Thermal behaviour of melamine-modified urea-formaldehyde resins[J]. Journal of Thermal Analysis and Calorimetry, 2010, 99(3): 755-762. |
| [21] | Hamed YOUNESI-KORDKHEILI. Reduction of formaldehyde emission from urea-formaldehyde resin by maleated nanolignin[J]. International Journal of Adhesion and Adhesives, 2024, 132: 103677. |
| [22] | IVANOV Daniil, EKATERINCHEVA Mariya, KALASHNIKOV Aleksey, et al. Usage of the new modifier-curing agent in plywood technology: The influence to urea-formaldehyde resin curingand formaldehyde emission[J]. Periodica Polytechnica Chemical Engineering, 2023, 67(3): 386-395. |
| [23] | BACIGALUPE Alejandro, MOLINARI Fabricio, EISENBERG Patricia, et al. Adhesive properties of urea-formaldehyde resins blended with soy protein concentrate[J]. Advanced Composites and Hybrid Materials, 2020, 3(2): 213-221. |
| [24] | JIN Shicun, LI Kuang, GAO Qiang, et al. Multiple crosslinking strategy to achieve high bonding strength and antibacterial properties of double-network soy adhesive[J]. Journal of Cleaner Production, 2020, 254: 120143. |
| [25] | Patryk JĘDRZEJCZAK, PUSZKA Andrzej, KUBIAK Adam, et al. New lignin-based hybrid materials as functional additives for polymer biocomposites: From design to application[J]. International Journal of Biological Macromolecules, 2021, 190: 624-635. |
| [26] | HU Lihong, PAN Hui, ZHOU Yonghong, et al. Methods to improve lignin’s reactivity as a phenol substitute and as replacement for other phenolic compounds: A brief review[J]. BioResources, 2011, 6(3): 3515-3525. |
| [27] | LIU Liyuan, CHIANG Wanshuan, CHANG Houmin, et al. Phenolation to improve hardwood kraft lignin for wood adhesive application[J]. Polymers, 2024, 16(13): 1923. |
| [28] | YANG Guangxu, GONG Zhenggang, ZHOU Bei, et al. Hydrodeoxygenation of condensed lignins followed by acid-mediated methylolation enables preparation of lignin-based wood adhesives[J]. Green Chemistry, 2024, 26(2): 753-759. |
| [29] | GHAHRI Saman, CHEN Xinyi, PIZZI Antonio, et al. Natural tannins as new cross-linking materials for soy-based adhesives[J]. Polymers, 2021, 13(4): 595. |
| [30] | DANIELLI Dianessa, PIRES Marina Rates, SILVA ARAUJO Elesandra DA, et al. Application of Myrcia splendens tannins in the composition of urea-formaldehyde adhesive for sustainable wood bonding[J]. Research, Society and Development, 2021, 10(12): e370101220543. |
| [31] | EFHAMISISI Davood, THEVENON Marie-France, HAMZEH Yahya, et al. Induced tannin adhesive by boric acid addition and its effect on bonding quality and biological performance of poplar plywood[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(5): 2734-2740. |
| [32] | PENG Jinda, LIU Fangfang, FENG Fuqi, et al. Enhancing environmentally friendly tannin adhesive for plywood through hyperbranched polyamide[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(37): 13805-13811. |
| [33] | CHEN Xiaojian, SUN Ce, WANG Qiong, et al. Preparation of glycidyl methacrylate grafted starch adhesive to apply in high-performance and environment-friendly plywood[J]. International Journal of Biological Macromolecules, 2022, 194: 954-961. |
| [34] | SU Mengdie, WU Jinfu, PAN Peidi, et al. Preparation and characterization of a water-resistant polyamide-oxidized starch-methyl methacrylate eco-friendly wood adhesive[J]. International Journal of Biological Macromolecules, 2022, 194: 763-769. |
| [35] | LUBIS Muhammad Adly Rahandi, SARI Fahriya Puspita, LAKSANA Raden Permana Budi, et al. Ambient curable natural rubber latex adhesive cross-linked with polymeric isocyanate for bonding wood[J]. Polymer Bulletin, 2022, 79(8): 6745-6757. |
| [36] | LEE Seng hua, TAHIR Paridah MD, Wei Chen LUM, et al. A review on citric acid as green modifying agent and binder for wood[J]. Polymers, 2020, 12(8): 1692. |
| [37] | WIDYORINI Ragil, NUGRAHA Pradana Ardhi, RAHMAN Muhammad Zakky Arief, et al. Bonding ability of a new adhesive composed of citric acid-sucrose for particleboard[J]. BioResources, 2016, 11(2): 4526-4535. |
| [38] | CHARII Hassan, BOUSSETTA Abdelghani, BENHAMOU Anass AIT, et al. Exploring the potential of chitin and chitosan extracted from shrimp shell waste in enhancing urea-formaldehyde wood adhesives[J]. International Journal of Adhesion and Adhesives, 2024, 129: 103599. |
| [39] | ERGUN Mehmet Emin, İsmail ÖZLÜSOYLU, Abdullah İSTEK, et al. Analysis and impact of activated carbon incorporation into urea-formaldehyde adhesive on the properties of particleboard[J]. Coatings, 2023, 13(9): 1476. |
| [40] | HONG Zhe, YAN Kezhen, WANG Min, et al. Performance investigation of phenol-formaldehyde resin (PF) and organic montmorillonite (OMMT) compound-modified bituminous mixture[J]. International Journal of Pavement Engineering, 2024, 25(1): 2301451 |
| [41] | ZHANG Yimiao, MENG Fuliang, HU Zhenguo, et al. A novel bio-mass resveratrol-modified lignin-based phenolic resin with high glass transition temperature and improved mechanical properties[J]. Journal of Polymers and the Environment, 2024, 32(10): 4986-5000. |
| [42] | WEILER Samuel, SCHWARTZKOPF Patrick, HAFFNER Henry, et al. Development of a high-pressure infiltration process for phenol-formaldehyde matrix composites[J]. Polymer International, 2024, 73(7): 509-515. |
| [43] | 张雅静, 马榴强. 木质素改性三聚氰胺甲醛树脂发泡材料的研究[J]. 化工新型材料, 2012, 40(8): 109-110. |
| ZHANG Yajing, MA Liuqiang. Research of lignin modified melamine formaldehyde resin foam materials[J]. New Chemical Materials, 2012, 40(8): 109-110. | |
| [44] | PARK Byung-Dae, LEE Sangmin, Jeang-Kwan ROH. Effects of formaldehyde/urea mole ratio and melamine content on the hydrolytic stability of cured urea-melamine-formaldehyderesin[J]. European Journal of Wood and Wood Products, 2009, 67(1): 121-123. |
| [45] | YUE L, MENG Z, YI Z, et al. Effects of different denaturants on properties and performance of soy protein-based adhesive[J]. Polymers, 2019, 11(8): E1262. |
| [46] | LI Kaichang, PESHKOVA Svetlana, GENG Xinglian. Investigation of soy protein-kymene® adhesive systems for wood composites[J]. Journal of the American Oil Chemists’ Society, 2004, 81(5): 487-491. |
| [47] | 刘奇龙. 耐水增强KMnO4氧化淀粉胶黏剂的研制[J]. 包装工程, 2010, 31(11): 63-66. |
| LIU Qilong. Development of water resistant enhanced KMnO4 oxidized starch adhesive[J]. Packaging Engineering, 2010, 31(11): 63-66. | |
| [48] | 王艳明, 于静, 李敏贤, 等. 无甲醛淀粉胶黏剂的合成[J]. 包装工程, 2016, 37(21): 81-85. |
| WANG Yanming, YU Jing, LI Minxian, et al. Preparation of formaldehyde-free starch adhesive[J]. Packaging Engineering, 2016, 37(21): 81-85. | |
| [49] | ZHAO L, XIA W, TARVERDI K, et al. Biocomposite boards from wheat straw without addition of bonding agent[J]. Materials Science and Technology, 2014, 30(5): 603-610. |
| [50] | WANG Tianyu, LI Hanyang, DIAO Xinyong, et al. Lignin to dispersants, adsorbents, flocculants and adhesives: A critical review on industrial applications of lignin[J]. Industrial Crops and Products, 2023, 199: 116715. |
| [51] | 王璇, 吴志刚, 董霁莹, 等. 羟甲基酚制备单宁基胶黏剂与性能[J]. 西北林学院学报, 2017, 32(1): 234-238. |
| WANG Xuan, WU Zhigang, DONG Jiying, et al. Preparation and performance of tannin-based adhesive crolinked by hydroxymethyl phenol[J]. Journal of Northwest Forestry University, 2017, 32(1): 234-238. | |
| [52] | GE Shengbo, ZHENG Guiyang, SHI Yang, et al. Facile fabrication of high-strength biocomposite through Mg2+-enhanced bonding in bamboo fiber[J]. Giant, 2024, 18: 100253. |
| [53] | WANG Yang, YE Haoran, XIA Changlei, et al. High-performance poplar-polyethylene laminates based on microwave-assisted acetic acid pretreatment process with potential application in construction[J]. Journal of Building Engineering, 2023, 72: 106731. |
| [54] | YANG Yang, ZHANG Lei, ZHANG Jijuan, et al. Fabrication of environmentally, high-strength, fire-retardant biocomposites from small-diameter wood lignin in situ reinforced cellulose matrix[J]. Advanced Composites and Hybrid Materials, 2023, 6(4): 140. |
| [55] | TORGAL Fernando Pacheco. Biotechnologies and biomimetics for civil engineering[M]. Springer, 2015: 437. |
| [56] | 赵鹏辉, 张虹英. 新装修居室内空气污染特征分析与净化措施研究[J]. 环境科学与管理, 2024, 49(8): 70-74. |
| ZHAO Penghui, ZHANG Hongying. Analysis of air pollution characteristics and purification measures in newly decorated bedrooms[J]. Environmental Science and Management, 2024, 49(8): 70-74. | |
| [57] | RONG Haiqin, Zhenyu RYU, ZHENG Jingtang, et al. Influence of heat treatment of rayon-based activated carbon fibers on the adsorption of formaldehyde[J]. Journal of Colloid and Interface Science, 2003, 261(2): 207-212. |
| [58] | AVERLANT Rémy, ROYER Dr Sébastien, GIRAUDON Dr Jean-Marc, et al. Mesoporous silica-confined manganese oxide nanoparticles as highly efficient catalysts for the low-temperature elimination of formaldehyde[J]. ChemCatChem, 2014, 6(1): 152-161. |
| [59] | HU Zichu, LIU Hui, ZUO Ya, et al. Facile synthesis of magnesium-based metal-organic framework with tailored nanostructure for effective volatile organic compounds adsorption[J]. Royal Society Open Science, 2022, 9(3): 211544. |
| [60] | WANG Lu, LIANG Xiangyong, CHANG Zhiyi, et al. Effective formaldehyde capture by green cyclodextrin-based metal-organic framework[J]. ACS Applied Materials & Interfaces, 2018, 10(1): 42-46. |
| [61] | SALTHAMMER Tunga, MENTESE Sibel, MARUTZKY Rainer. Formaldehyde in the indoor environment[J]. Chemical Reviews, 2010, 110(4): 2536-2572. |
| [62] | ZHANG Weicai, CHEN Lidong, XU Linhe, et al. Advanced nanonetwork-structured carbon materials for high-performance formaldehyde capture[J]. Journal of Colloid and Interface Science, 2019, 537: 562-568. |
| [63] | DE FALCO Giacomo, BARCZAK Mariusz, MONTAGNARO Fabio, et al. A new generation of surface active carbon textiles As reactive adsorbents of indoor formaldehyde[J]. ACS Applied Materials & Interfaces, 2018, 10(9): 8066-8076. |
| [64] | MATSUO Y, NISHINO Y, FUKUTSUKA T, et al. Removal of formaldehyde from gas phase by silylated graphite oxide containing amino groups[J]. Carbon, 2008, 46(8): 1162-1163. |
| [65] | HENNER Pascale, SCHIAVON Michel, DRUELLE Vincent, et al. Phytotoxicity of ancient gaswork soils. Effect of polycyclic aromatic hydrocarbons (PAHs) on plant germination[J]. Organic Geochemistry, 1999, 30(8): 963-969. |
| [66] | GONG Ying, ZHOU Xiaorong, MA Xingmiao, et al. Sustainable removal of formaldehyde using controllable water hyacinth[J]. Journal of Cleaner Production, 2018, 181: 1-7. |
| [67] | ZHAO Suya, SU Yuhong, LIANG Hanxiao. Efficiency and mechanism of formaldehyde removal from air by two wild plants; Plantago asiatica L. and Taraxacum mongolicum Hand.-Mazz[J]. Journal of Environmental Health Science and Engineering, 2019, 17(1): 141-150. |
| [68] | YANG Yuxia, SU Yuhong, ZHAO Suya. An efficient plant-microbe phytoremediation method to remove formaldehyde from air[J]. Environmental Chemistry Letters, 2020, 18(1): 197-206. |
| [69] | NALDONI Alberto, ALLIETA Mattia, SANTANGELO Saveria, et al. Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles[J]. Journal of the American Chemical Society, 2012, 134(18): 7600-7603. |
| [70] | SERPONE Nick. Is the band gap of pristine TiO2 narrowed by anion- and cation-doping of titanium dioxide in second-generation photocatalysts?[J]. The Journal of Physical Chemistry B, 2006, 110(48): 24287-24293. |
| [71] | NALDONI Alberto, ALTOMARE Marco, ZOPPELLARO Giorgio, et al. Photocatalysis with reduced TiO2: From black TiO2 to cocatalyst-free hydrogen production[J]. ACS Catalysis, 2019, 9(1): 345-364. |
| [72] | ZHANG Lei, ZHAO Xiufei, YUAN Zhengqiu, et al. Oxygen defect-stabilized heterogeneous single atom catalysts: preparation, properties and catalytic application[J]. Journal of Materials Chemistry A, 2021, 9(7): 3855-3879. |
| [73] | SETVIN Martin, FRANCHINI Cesare, HAO Xianfeng, et al. Direct view at excess electrons in TiO2 rutile and anatase[J]. Physical Review Letters, 2014, 113(8): 086402. |
| [74] | RAHIMI Nazanin, Randolph PAX, GRAY Evan MacA. Review of functional titanium oxides. Ⅱ: Hydrogen-modified TiO2 [J]. Progress in Solid State Chemistry, 2019, 55: 1-19. |
| [75] | SUN Shaodi, WU Xiaomin, HUANG Zhiwei, et al. Engineering stable Pt nanoclusters on defective two-dimensional TiO2 nanosheets by introducing SMSI for efficient ambient formaldehyde oxidation[J]. Chemical Engineering Journal, 2022, 435: 135035. |
| [76] | LI Rong, HUANG Yu, ZHU Dandan, et al. Improved oxygen activation over a carbon/Co3O4 nanocomposite for efficient catalytic oxidation of formaldehyde at room temperature[J]. Environmental Science & Technology, 2021, 55(6): 4054-4063. |
| [77] | WANG Shuo, XIE Jie, DENG Zhiyong, et al. HCHO oxidation over the δ-MnO2 catalyst: Enhancing oxidative activities of surface lattice oxygen and surface adsorbed oxygen by weakening Mn—O bond[J]. Fuel, 2023, 344: 128141. |
| [78] | WU Yihai, GUO Qingbin, LIU Hui, et al. Effect of Fe doping on the surface properties of δ-MnO2 nanomaterials and its decomposition of formaldehyde at room temperature[J]. Journal of Environmental Chemical Engineering, 2022, 10(5): 108277. |
| [79] | QU Miaomiao, CHENG Zhuowei, SUN Zhirong, et al. Non-thermal plasma coupled with catalysis for VOCs abatement: A review[J]. Process Safety and Environmental Protection, 2021, 153: 139-158. |
| [80] | HUANG Yanmei, YU Yu, YU Yifu, et al. Oxygen vacancy engineering in photocatalysis[J]. Solar RRL, 2020, 4(8): 2000037. |
| [81] | ZHU Kaiyue, SHI Fang, ZHU Xuefeng, et al. The roles of oxygen vacancies in electrocatalytic oxygen evolution reaction[J]. Nano Energy, 2020, 73: 104761. |
| [82] | SHEN Meikun, DING Tianben, HARTMAN Steven T, et al. Nanoscale colocalization of fluorogenic probes reveals the role of oxygen vacancies in the photocatalytic activity of tungsten oxide nanowires[J]. ACS Catalysis, 2020, 10(3): 2088-2099. |
| [83] | NAKATA Kazuya, FUJISHIMA Akira. TiO2 photocatalysis: Design and applications[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2012, 13(3): 169-189. |
| [84] | SCHNEIDER Jenny, MATSUOKA Masaya, TAKEUCHI Masato, et al. Understanding TiO2 photocatalysis: Mechanisms and materials[J]. Chemical Reviews, 2014, 114(19): 9919-9986. |
| [85] | NARINDRI RARA WINAYU Birgitta, TSAI Yun-Yan, CHU Hsin. Enhancement of formaldehyde removal by graphene, S, and N doping on TiO2 nanocomposite photocatalyst[J]. Journal of Physics and Chemistry of Solids, 2022, 170: 110961. |
| [86] | HAN Lijuan, AN Xingcai, ZHANG Ping, et al. The removal of formaldehyde via visible photocatalysis using the black TiO2 nanoparticles with mesoporous[J]. ChemistrySelect, 2020, 5(1): 97-103. |
| [87] | CHANG Zhengshi, WANG Cong, ZHANG Guanjun. Progress in degradation of volatile organic compounds based on low-temperature plasma technology[J]. Plasma Processes and Polymers, 2020, 17(4): 1900131. |
| [88] | LI Chaozhong, WANG Danyang, FU Yue, et al. Mesoporous γ-Al2O3 supported Mn-Ce-Co ternary oxides for the efficient plasma-catalytic oxidation of formaldehyde[J]. Nano, 2023, 18(13): 2350102. |
| [89] | STARODUBOV S S, NECHAEV I V, VVEDENSKII A V. DFT modeling of adsorption of formaldehyde and methanediol anion on the (111) face of IB metals[J]. Russian Journal of Physical Chemistry A, 2016, 90(1): 122-129. |
| [90] | ZHANG Hongping, LUO Xuegang, LIN Xiaoyang, et al. Density functional theory calculations on the adsorption of formaldehyde and other harmful gases on pure, Ti-doped, or N-doped graphene sheets[J]. Applied Surface Science, 2013, 283: 559-565. |
| [91] | KANG Misun, LEE Jong-Tak, Jae Young BAE. Facile mesoporous hollow silica synthesis for formaldehyde adsorption[J]. International Journal of Molecular Sciences, 2023, 24(4): 4208. |
| [92] | REZAEE Abbas, RANGKOOY Hosseinali, Ahmad JONIDI-JAFARI, et al. Surface modification of bone char for removal of formaldehyde from air[J]. Applied Surface Science, 2013, 286: 235-239. |
| [93] | 骆伟, 刘荣华, 邱汉峰. 自然通风作用下室内甲醛浓度分布数值模拟分析[J]. 制冷与空调(四川), 2013, 27(5): 504-508. |
| LUO Wei, LIU Ronghua, QIU Hanfeng. Numerical simulation and analysis of indoor formaldehyde concentration distribution under the action of nature ventilation[J]. Refrigeration & Air Conditioning, 2013, 27(5): 504-508. | |
| [94] | XU Zhongjun, WANG Li, HOU Haiping. Formaldehyde removal by potted plant-soil systems[J]. Journal of Hazardous Materials, 2011, 192(1): 314-318. |
| [95] | KANG Yujin, Hyung-Kun JO, JANG Min-Hyeok, et al. A brief review of formaldehyde removal through activated carbon adsorption[J]. Applied Sciences, 2022, 12(10): 5025. |
| [96] | XIE Yangyang, Sining LYU, ZHANG Yue, et al. Adsorption and degradation of volatile organic compounds by metal-organic frameworks (MOFs): A review[J]. Materials, 2022, 15(21): 7727. |
| [97] | ZHANG Xianhua, LIANG Yuan, LIU Fan, et al. MnO2-loaded flexible mullite nanofiber filter materials for removing particulate matter and formaldehyde from indoor air[J]. Separation and Purification Technology, 2024, 343: 127135. |
| [98] | LI Rong, HUANG Yu, ZHU Dandan, et al. A review of Co3O4-based catalysts for formaldehyde oxidation at low temperature: Effect parameters and reaction mechanism[J]. Aerosol Science and Engineering, 2020, 4(3): 147-168. |
| [99] | HUANG Yu, Steven HO, LU Yanfeng, et al. Removal of indoor volatile organic compounds via photocatalytic oxidation: A short review and prospect[J]. Molecules, 2016, 21(1): 56. |
| [100] | GAO Yi, LIN Zhe, ZHOU Huipeng, et al. Degradation of indoor formaldehyde by the flexible porous material loaded photocatalyst[J]. Journal of Environmental Chemical Engineering, 2024, 12(1): 111823. |
| [101] | BAHRI Mitra, HAGHIGHAT Fariborz. Plasma-based indoor air cleaning technologies: The state of the art-review[J]. CLEAN—Soil, Air, Water, 2014, 42(12): 1667-1680. |
| [102] | YUE X G, HE Z H, MA P Y, et al. Treatment of formaldehyde by corona plasma cooperated with photo-catalysis[J]. Journal of Physics: Conference Series, 2013, 418: 012122. |
| [103] | JIN Qing, XIANG Youlin, GAN Lu. Real-time degradation of indoor formaldehyde released from actual particle board by heterostructured g-C3N4/TiO2 photocatalysts under visible light[J]. Catalysts, 2023, 13(2), 238. |
| [104] | LAI Mengyao, WANG Yachao, LI Fan, et al. Sodium lignosulfonate improve the flame retardancy of carboxymethyl chitosan@melamine polyphosphate-containing silicone acrylic emulsion-based coatings[J]. Journal of Applied Polymer Science, 2024, 141(39): e55989. |
| [105] | CHEN Weimin, LI Shuai, FEIZBAKHSHAN Mohammad, et al. TiO2-SiO2 nanocomposite aerogel loaded in melamine-impregnated paper for multi-functionalization: Formaldehyde degradation and smoke suppression[J]. Construction and Building Materials, 2018, 161: 381-388. |
| [106] | WANG Lingling, TANG Maojie, JIANG Haiqiu, et al. Sustainable, efficient, and synergistic photocatalytic degradation toward organic dyes and formaldehyde gas via Cu2O NPs@wood[J]. Journal of Environmental Management, 2024, 351: 119676. |
| [1] | LIN Yijie, QIAO Peng, LI Xinrui, ZHANG Hongbin, WANG Xueqin. Construction and application of heterostructures of photocatalyst TiO2 nanomaterials [J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 159-177. |
| [2] | WANG Rui, WANG Hailan, DAI Ruobin, WANG Zhiwei. Silicon fouling of reverse osmosis membrane for advanced treatment of industrial wastewater: Mechanisms, influencing factors and control strategies [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5315-5326. |
| [3] | DUAN Xianzhe, BI Wenting, LI Nan, DOU Jiale, SHAO Bingqing, WANG Jiawei, WU Peng, HUANG Huan, TANG Zhenping. Numerical simulation for disposal of high-level radioactive wastes (HLWs): Mechanisms and influencing factors of radionuclide migration [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5391-5405. |
| [4] | LU Yongqi, XIAO Jianing, DIE Qingqi, XU Siqi, HUANG Ruixiao, KONG Xiangrui, YANG Yufei. Pollutants release characteristics and environmental risk assessment in long-term leaching process of stockpiled coal fly ash [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5479-5490. |
| [5] | GAO Yan, LI Yongshuai, LI Gaoyang, PAN Hui, LING Hao. Dynamic control for Agrawal divided-wall column [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4594-4605. |
| [6] | WANG Guochao, DING Huidian, SHI Li, LI Qiang, XIA Tao, YUAN Yang. Temperature inferential control of compound distillation sequences [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4720-4731. |
| [7] | ZHOU Yu, TIAN Lei, HUANG Haitao, WEI Qi. Deep filtration operation performance control method and experimental validation [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3737-3747. |
| [8] | MA Jing, MA Yulong, ZHU Li, QIAO Song, SUN Yonggang, JI Wenxin. Activation of silica-aluminium minerals of coal gasification coarse slag by different methods [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 4251-4266. |
| [9] | YU Anfeng, WU Qian, YANG Zhe, LUO Yun, WANG Yuchen, LIU Huan. Research progress on safety of green hydrogen storage and transportation process and material failure mechanism [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2972-2983. |
| [10] | NIU Jingwei, CHEN Xiaoyang, ZHANG Jian, ZHOU Yuzhi, CHEN Min. Activated persulfate-induced degradation of typical environmental endocrine disruptors in soil [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2285-2296. |
| [11] | SONG Kunli, XIAO Lei, MA Dandan, XIAO Peng, YANG Shasha, SHI Jianwen. A review of ammonia selective denitrification catalysts at ultra-low temperature [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2028-2035. |
| [12] | CHEN Jiquan, REN Pengwei, ZHU Riguang, CHEN Sisi, TANG Xingying, QIN Xinyu, YANG Jianqiao. Corrosion of nickel-based alloys in supercritical water oxidation containing erosive ions: A review [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2141-2155. |
| [13] | HE Jing, ZHENG Na, XU Li, SHEN Sudan, PU Qun, FANG Eryuan, JIE Suyun. Techniques and applications of atomic force microscope infrared spectroscopy and chemical imaging [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2156-2171. |
| [14] | CAO Yonggang, ZHANG Zilong, LI Zehao, LI Zeyou, GU Yin, XUE Kui, WANG Jialiang, HUANG Wei. Research progress on preparation of α-hemihydrate gypsum from industrial by-product gypsum [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1505-1519. |
| [15] | GAO Wenfang, GUO Tianyue, GAO Fang, YU Man, CUI Han, LI Huajie, YAN Wenyi, LYU Longyi, SUN Zhi. A critical review on typical criticality evaluation methods for raw materials worldwide [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1619-1631. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |