Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (11): 6552-6562.DOI: 10.16085/j.issn.1000-6613.2024-1660

• Materials science and technology • Previous Articles    

Effect and mechanism of rubber-modified bio-resin on the rheological properties of asphalt

LI Yiming(), HUANG Kai, CHEN Xiule, CHENG Peifeng   

  1. School of Civil Engineering and Transportation, Northeast Forestry University, Harbin 150040, Heilongjiang, China
  • Received:2024-10-15 Revised:2024-11-05 Online:2025-12-08 Published:2025-11-25
  • Contact: LI Yiming

橡胶改性生物树脂对沥青流变性能的影响及作用机理

李艺铭(), 黄凯, 陈修乐, 程培峰   

  1. 东北林业大学土木与交通学院,黑龙江 哈尔滨 150040
  • 通讯作者: 李艺铭
  • 作者简介:李艺铭(1993—),男,副教授,研究方向为生物质材料在道路工程中的高效化利用。E-mail:liyiming@nefu.edu.cn
  • 基金资助:
    黑龙江省重点研发项目(GZ20220062);龙建路桥股份有限公司博士后自主研发项目(230000100004258240011)

Abstract:

To achieve the high-value utilization of biomass materials in road engineering and the sustainable development of pavement materials, a rubber-toughened bio-resin was synthesized, and the effects of rubber toughening and resin preparation processes on the rheological properties of asphalt were analyzed. Firstly, the optimal preparation process for the bio-resin (LPF) was determined using orthogonal experimental design and response surface methodology. Secondly, nitrile rubber-bio-resin (NBR-LPF) was synthesized through rubber toughening, and its mechanical properties and micro-morphology were analyzed using a universal testing machine and scanning electron microscopy. Subsequently, the influence of the bio-resin on asphalt properties was evaluated through tests of the basic physical properties and rheological performance of asphalt. Finally, the action mechanism of the bio-resin on asphalt performance was investigated using Fourier-transform infrared spectroscopy (FTIR). The results indicated that when the phenolic-to-formaldehyde ratio was 1∶1.7, the lignin substitution rate was 50% and the NaOH mass fraction was 25%, the bio-resin achieved optimal enhancement of asphalt properties. Compared to the un-toughened LPF resin, the elongation at break of NBR-LPF increased by 60%. When the NBR-LPF content was between 8% and 11%, there was good compatibility between NBR-LPF and asphalt, resulting in a more stable network structure. The modification of asphalt by NBR-LPF primarily involved physical modification, with the "island" structure formed during curing enhancing the toughness of the bio-resin. Compared to bio-resin modified asphalt, NBR-LPF modified asphalt exhibited significantly improved high and low-temperature performance.

Key words: biomass, asphalt, rubber modification, sustainability, rheology

摘要:

为实现生物质材料在道路工程中的高值化利用及路面材料的可持续发展,本文研究合成了一种橡胶增韧生物树脂,并分析了橡胶增韧及树脂制备工艺等对沥青流变性能的影响。首先,利用正交实验设计和响应曲面法确定生物树脂(LPF)的最佳制备工艺;其次,通过橡胶增韧的方式,合成丁腈橡胶-生物树脂(NBR-LPF),利用万能试验机和扫描电镜对树脂的力学性能和微观形貌进行分析;然后,通过沥青基本物理性能及流变性能实验分析了生物树脂对沥青性能的影响;最后,利用傅里叶变换红外光谱(FTIR)探究了生物树脂对沥青性能的作用机理。结果表明,当酚醛摩尔比为1∶1.7、木质素替代率为50%、NaOH质量分数为25%时,生物树脂对沥青性能的提升效果达到最佳;与未增韧的LPF树脂相比,NBR-LPF断裂伸长率提高60%;NBR-LPF掺量为8%~11%时,NBR-LPF与沥青的相容性较好,可形成较为稳定的网络结构。NBR-LPF对沥青的改性作用主要以物理改性为主,其在固化过程中所形成的“海岛”结构,使得生物树脂的韧性提高;与生物树脂改性沥青相比,NBR-LPF改性沥青具有了更加良好的高低温性能。

关键词: 生物质, 沥青, 橡胶改性, 可持续性, 流变学

CLC Number: 

京ICP备12046843号-2;京公网安备 11010102001994号
Copyright © Chemical Industry and Engineering Progress, All Rights Reserved.
E-mail: hgjz@cip.com.cn
Powered by Beijing Magtech Co. Ltd