| [1] |
夏帆, 崔诗才, 蒲锡鹏. 赤泥综合利用现状综述[J]. 中国资源综合利用, 2021, 39(4): 85-89, 105.
|
|
XIA Fan, CUI Shicai, PU Xipeng. Summary of the status quo of comprehensive utilization of red mud[J]. China Resources Comprehensive Utilization, 2021, 39(4): 85-89, 105.
|
| [2] |
WANG Li, SUN Ning, TANG Honghu, et al. A review on comprehensive utilization of red mud and prospect analysis[J]. Minerals, 2019, 9(6): 362.
|
| [3] |
郝勇, 信翔宇, 黄永波, 等. 工业固废赤泥在水泥制备中的应用研究进展[J]. 中国粉体技术, 2022, 28(2): 1-6.
|
|
HAO Yong, XIN Xiangyu, HUANG Yongbo, et al. Application of industrial solid waste red mud in cement preparation: A review[J]. China Powder Science and Technology, 2022, 28(2): 1-6.
|
| [4] |
PAVANI K, JAIN Surabhi, Sarat K DAS. Reuse of red mud in construction of tailing dam[J]. IOP Conference Series: Earth and Environmental Science, 2022, 982(1): 012043.
|
| [5] |
ZHANG Tingan, WANG Yanxiu, LU Guozhi, et al. Comprehensive utilization of red mud: Current research status and a possible way forward for non-hazardous treatment[M]//Light metals 2018. Cham: Springer International Publishing, 2018: 135-141.
|
| [6] |
刘继东, 任杰, 陈娟, 等. 酸雨淋溶条件下赤泥中重金属在土壤中的迁移特性及其潜在危害[J]. 农业环境科学学报, 2017, 36(1): 76-84.
|
|
LIU Jidong, REN Jie, CHEN Juan, et al. Migration characteristics and potential hazards of heavy metals from bauxite residue to soil under simulated acid rain[J]. Journal of Agro-Environment Science, 2017, 36(1): 76-84.
|
| [7] |
KUTLE A, NAĐ K, OBHOĐAŠ J, et al. Assessment of environmental condition in the waste disposal site of an ex-alumina plant near Obrovac, Croatia[J]. X-Ray Spectrometry, 2004, 33(1): 39-45.
|
| [8] |
Kian Huat LIM, SHON Byung Hyun. Metal components (Fe, Al, and Ti) recovery from red mud by sulfuric acid leaching assisted with ultrasonic waves[J]. Int. J. Emerg. Technol. Adv. Eng., 2015, 5(2): 25-32.
|
| [9] |
李洪达, 乐红志, 朱建平, 等. 赤泥烧结制品中的重金属溶出特性研究[J]. 硅酸盐通报, 2020, 39(9): 2932-2936, 2943.
|
|
LI Hongda, LE Hongzhi, ZHU Jianping, et al. Dissolution characteristics of heavy metals in red mud sintered products[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(9): 2932-2936, 2943.
|
| [10] |
张塞. 赣南某稀土矿区水土环境评价研究[D]. 北京: 中国地质大学(北京), 2020.
|
|
ZHANG Sai. Study on water and soil environment evaluation of a rare earth mining area in southern Jiangxi[D]. Beijing: China University of Geosciences, 2020.
|
| [11] |
李东艳, 庞少鹏, 徐心远, 等. 煤矸石山周围农田土壤重金属形态分布及风险评价[J]. 河南理工大学学报(自然科学版), 2015, 34(5): 722-729.
|
|
LI Dongyan, PANG Shaopeng, XU Xinyuan, et al. Morphology distribution and risk assessment of heavy metals in agricultural soils around coal gangue heap[J]. Journal of Henan Polytechnic University (Natural Science), 2015, 34(5): 722-729.
|
| [12] |
唐莹, 武相林, 孙敏, 等. 北京市门头沟风化煤矸石中汞的赋存形态与溶出特征分析[J]. 环境化学, 2022, 41(3): 962-976.
|
|
TANG Ying, WU Xianglin, SUN Min, et al. Analysis on the occurrence and dissolution characteristics of mercury in weathered coal gangue in Mentougou, Beijing[J]. Environmental Chemistry, 2022, 41(3): 962-976.
|
| [13] |
SPADARO Lorenzo, ARENA Francesco, DI CHIO Roberto, et al. Definitive assessment of the level of risk of exhausted catalysts: Characterization of Ni and V contaminates at the limit of detection[J]. Topics in Catalysis, 2019, 62(1): 266-272.
|
| [14] |
秦延文, 张雷, 郑丙辉, 等. 太湖表层沉积物重金属赋存形态分析及污染特征[J]. 环境科学, 2012, 33(12): 4291-4299.
|
|
QIN Yanwen, ZHANG Lei, ZHENG Binghui, et al. Speciation and pollution characteristics of heavy metals in the sediment of Taihu Lake[J]. Environmental Science, 2012, 33(12): 4291-4299.
|
| [15] |
DOS SANTOS Kelly Rodrigues, SANTOS SILVA Jefferson, GONÇALVES Jardel Pereira, et al. Stabilization/solidification of toxic elements in cement pastes containing a spent FCC catalyst[J]. Water, Air, & Soil Pollution, 2021, 232(2): 48.
|
| [16] |
PENG Bingxian, LI Xinrui, ZHAO Weihua, et al. Study on the release characteristics of chlorine in coal gangue under leaching conditions of different pH values[J]. Fuel, 2018, 217: 427-433.
|
| [17] |
MIZUTANI Satoshi, YOSHIDA Tsuneyuki, SAKAI Shin-ichi, et al. Release of metals from MSW I fly ash and availability in alkali condition[J]. Waste Management, 1996, 16(5/6): 537-544.
|
| [18] |
PANG Lang, WANG Dengquan, WANG Heng, et al. Occurrence and leaching behaviors of heavy-metal elements in metallurgical slags[J]. Construction and Building Materials, 2022, 330: 127268.
|
| [19] |
黄建欢. 垃圾焚烧飞灰中重金属的浸出特性及其水泥固化研究[D]. 广州: 华南理工大学, 2013.
|
|
HUANG Jianhuan. Study on leaching characteristics of heavy metals in fly ash from MSW incineration and cement solidification[D]. Guangzhou: South China University of Technology, 2013.
|
| [20] |
WU Qing, QIU Rongliang, Yuena LYU.Effects of simulated acid rain on cation release in soils of South China[J]. Journal of Environmental Sciences, 1998, 10(3): 54-60.
|
| [21] |
王登权, 何伟, 王强, 等. 重金属在水泥基材料中的固化和浸出研究进展[J]. 硅酸盐学报, 2018, 46(5): 683-693.
|
|
WANG Dengquan, HE Wei, WANG Qiang, et al. Review on stabilization and leaching of heavy metals in cementitious materials[J]. Journal of the Chinese Ceramic Society, 2018, 46(5): 683-693.
|
| [22] |
邵幸瑞, 张先龙, 李子阳, 等. 废弃流化催化裂化催化剂中重金属的赋存形态、浸出特性及其健康风险评价[J]. 环境科学研究, 2024, 37(8): 1819-1828.
|
|
SHAO Xingrui, ZHANG Xianlong, LI Ziyang, et al. Speciation and leaching characteristics of heavy metals in spent fluid catalytic cracking catalyst and its health risk assessment[J]. Research of Environmental Sciences, 2024, 37(8): 1819-1828.
|
| [23] |
EGEMEN Ege, YURTERI Coşkun. Regulatory leaching tests for fly ash: A case study[J]. Waste Management & Research, 1996, 14(1): 43-50.
|
| [24] |
SLOOT Henrik. European activities on harmonisation of leaching/extraction tests and standardisation in relation to the use of alternative materials in construction[J]. Icmat, 2001.
|
| [25] |
MOUSSACEB K, AIT-MOKHTAR A, MERABET D. Influence of leaching conditions on the release kinetics of lead, chromium and nickel from solidified/stabilized cementitious materials[J]. Environmental Technology, 2012, 33(24): 2681-2690.
|
| [26] |
KARIUS Volker, HAMER Kay. pH and grain-size variation in leaching tests with bricks made of harbour sediments compared to commercial bricks[J]. Science of the Total Environment, 2001, 278(1/2/3): 73-85.
|
| [27] |
LIU Jie, ZHAO Jihui, WANG Yiren, et al. Speciation distribution and leaching behavior of heavy metals in coal gasification fine ash: Influence of particle size, carbon content and mineral composition[J]. Science of the Total Environment, 2024, 947: 174498.
|
| [28] |
LUO Hongwei, CHENG Ying, HE Dongqin, et al. Review of leaching behavior of municipal solid waste incineration (MSWI) ash[J]. Science of the Total Environment, 2019, 668: 90-103.
|
| [29] |
ZHANG Y, CETIN B, LIKOS W J, et al. Impacts of pH on leaching potential of elements from MSW incineration fly ash[J]. Fuel, 2016, 184: 815-825.
|
| [30] |
范程程, 王宝民, 王晓军. 生活垃圾焚烧飞灰理化特性与污染毒性研究[J]. 中国环境科学, 2023, 43(S1): 149-159.
|
|
FAN Chengcheng, WANG Baomin, WANG Xiaojun. Study on physical and chemical properties and pollution toxicity of fly ash from domestic waste incineration[J]. China Environmental Science, 2023, 43(S1): 149-159.
|
| [31] |
吴超君, 郝喆, 曹明杰, 等. 煤岩重金属浸出特性及其水环境健康风险评价[J]. 能源环境保护, 2021, 35(3): 31-38.
|
|
WU Chaojun, HAO Zhe, CAO Mingjie, et al. Leaching characteristics of heavy metals in coal rock and its water environmental health risk assessment[J]. Energy Environmental Protection, 2021, 35(3): 31-38.
|
| [32] |
李晓鑫, 王昕宇, 罗文香, 等. 成都市中心城区街尘中锑形态分布及生态风险评价[J]. 环境化学, 2023, 42(6): 1836-1843.
|
|
LI Xiaoxin, WANG Xinyu, LUO Wenxiang, et al. Distribution of antimony species in street dust in downtown Chengdu and its ecological risk assessment[J]. Environmental Chemistry, 2023, 42(6): 1836-1843.
|
| [33] |
张永康, 冯乃琦, 刘岩, 等. 江西某铅锌矿区土壤重金属形态分析及风险评价[J]. 矿产综合利用, 2023(3): 199-204, 210.
|
|
ZHANG Yongkang, FENG Naiqi, LIU Yan, et al. Speciation analysis and risk assessment of heavy metals in the soil of a lead-zinc mining area[J]. Multipurpose Utilization of Mineral Resources, 2023(3): 199-204, 210.
|
| [34] |
汪进, 韩智勇, 冯燕, 等. 成都市工业区绿地土壤重金属形态分布特征及生态风险评价[J]. 生态环境学报, 2021, 30(9): 1923-1932.
|
|
WANG Jin, HAN Zhiyong, FENG Yan, et al. Morphological distribution characteristics and ecological risk assessment of heavy metal in the green soil of industrial zone in Chengdu[J]. Ecology and Environmental Sciences, 2021, 30(9): 1923-1932.
|