Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (10): 5819-5827.DOI: 10.16085/j.issn.1000-6613.2024-1309
• Materials science and technology • Previous Articles
WANG Peiqi(
), DAI Jingxiong(
), ZHONG Liang
Received:2024-08-09
Revised:2024-09-28
Online:2025-11-10
Published:2025-10-25
Contact:
DAI Jingxiong
通讯作者:
代竟雄
作者简介:王沛琪(2000—),男,硕士研究生,研究方向为电磁功能材料。E-mail:2575880381@qq.com。
基金资助:CLC Number:
WANG Peiqi, DAI Jingxiong, ZHONG Liang. 3D printing preparation and microwave absorption property analysis of C/UV curable resin electromagnetic metamaterials[J]. Chemical Industry and Engineering Progress, 2025, 44(10): 5819-5827.
王沛琪, 代竟雄, 钟良. C/UV树脂电磁超材料的3D打印制备及微波吸收性能[J]. 化工进展, 2025, 44(10): 5819-5827.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1309
| 仪器 | 型号 | 生产厂商 |
|---|---|---|
| 分析仪器 | ||
| X射线衍射仪(XRD) | X′Pert PRO型 | 荷兰帕纳科公司 |
| 扫描电子显微镜(SEM) | JSM-7610型 | 日本电子公司 |
| 拉曼光谱分析仪(Raman) | In Via型 | 英国雷尼绍公司 |
| X射线光电子能谱仪(XPS) | ESCALAB Xi+型 | 赛默飞公司 |
| 测试仪器 | ||
| 矢量网络分析仪 | N5230型 | 安捷伦公司 |
| 仪器 | 型号 | 生产厂商 |
|---|---|---|
| 分析仪器 | ||
| X射线衍射仪(XRD) | X′Pert PRO型 | 荷兰帕纳科公司 |
| 扫描电子显微镜(SEM) | JSM-7610型 | 日本电子公司 |
| 拉曼光谱分析仪(Raman) | In Via型 | 英国雷尼绍公司 |
| X射线光电子能谱仪(XPS) | ESCALAB Xi+型 | 赛默飞公司 |
| 测试仪器 | ||
| 矢量网络分析仪 | N5230型 | 安捷伦公司 |
| 材料 | 最小反射损耗/dB | 有效吸收带宽/GHz | 匹配厚度/mm | 填充比(质量分数)/% | 参考文献 |
|---|---|---|---|---|---|
| 多孔层状硬碳材料 | -45 | 4.08 | 2.1 | 20 | [ |
| 碳纳米纤维网络 | -63.31 | 5.60 | 1.8 | 5 | [ |
| 碳纤维 | -16.1 | 3.6 | 1.4 | 5 | [ |
| 多孔炭 | -40.99 | 4.68 | 2.2 | 5 | [ |
| 生物质衍生碳微线圈 | -63.65 | <2 | 5.37 | 10 | [ |
| 碳纤维/还原氧化石墨烯 | -35.4 | <3 | 2.0 | 50 | [ |
| C/UV树脂 | -24.7 | 6.0 | 8.6 | 2.5 | 本文 |
| 材料 | 最小反射损耗/dB | 有效吸收带宽/GHz | 匹配厚度/mm | 填充比(质量分数)/% | 参考文献 |
|---|---|---|---|---|---|
| 多孔层状硬碳材料 | -45 | 4.08 | 2.1 | 20 | [ |
| 碳纳米纤维网络 | -63.31 | 5.60 | 1.8 | 5 | [ |
| 碳纤维 | -16.1 | 3.6 | 1.4 | 5 | [ |
| 多孔炭 | -40.99 | 4.68 | 2.2 | 5 | [ |
| 生物质衍生碳微线圈 | -63.65 | <2 | 5.37 | 10 | [ |
| 碳纤维/还原氧化石墨烯 | -35.4 | <3 | 2.0 | 50 | [ |
| C/UV树脂 | -24.7 | 6.0 | 8.6 | 2.5 | 本文 |
| [1] | ZHAO Biao, LI Yang, JI Hanyu, et al. Lightweight graphene aerogels by decoration of 1D CoNi chains and CNTs to achieve ultra-wide microwave absorption[J]. Carbon, 2021, 176: 411-420. |
| [2] | ZHANG Mu, CHEN Le, YU Yang, et al. Cabon nanofiber supported cobalt ferrite composites with tunable microwave absorption properties[J]. Ceramics International, 2021, 47(7): 9392-9399. |
| [3] | SISTA Kameswara Srikar, DWARAPUDI Srinivas, KUMAR Deepak, et al. Carbonyl iron powders as absorption material for microwave interference shielding: A review[J]. Journal of Alloys and Compounds, 2021, 853: 157251. |
| [4] | CAO Kunyao, YE Weiping, FANG Yuan, et al. Construction of three-dimensional porous network Fe-rGO aerogels with monocrystal magnetic Fe3O4@C core-shell structure nanospheres for enhanced microwave absorption[J]. Materials Today Physics, 2024, 42: 101383. |
| [5] | LIANG Liang, YAN Leilei, CAO Minghui, et al. Microwave absorption and compression performance design of continuous carbon fiber reinforced 3D printing pyramidal array sandwich structure[J]. Composites Communications, 2023, 44: 101773. |
| [6] | KUANG Daitao, SUN Xiaogang, MEAD James Lee, et al. Synthesis of ultra-small Co3O4-C core-shell nanoparticles with improved thermal stability and microwave absorption properties[J]. Diamond and Related Materials, 2024, 144: 110991. |
| [7] | HAN Pei, WU Chaoyang, TAI Jieyu, et al. Improved microwave absorption properties of ferrite-rGO composites by covalent bond[J]. Journal of Alloys and Compounds, 2023, 966: 171581. |
| [8] | QIU Yun, YANG Haibo, LIU Mingxia, et al. Construction of Ni/C composites with double-shell hollow porous structure toward high-efficiency microwave absorption[J]. Applied Surface Science, 2024, 645: 158885. |
| [9] | WANG Shuolei, LIU Yi, YANG Jian, et al. Microwave absorption properties of flexible fabric coating containing Ni decorated carbon fiber with frequency selection surface incorporation[J]. Diamond and Related Materials, 2024, 143: 110872. |
| [10] | ZHOU Min, LU Fei, CHEN Bei, et al. Thickness dependent complex permittivity and microwave absorption of NiCo2O4 nanoflakes[J]. Materials Letters, 2015, 159: 498-501. |
| [11] | QIN F, BROSSEAU C. A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles[J]. Journal of Applied Physics, 2012, 111(6): 061301. |
| [12] | QIU Yun, LIN Ying, YANG Haibo, et al. Hollow Ni/C microspheres derived from Ni-metal organic framework for electromagnetic wave absorption[J]. Chemical Engineering Journal, 2020, 383: 123207. |
| [13] | LEI Lei, YAO Zhengjun, ZHOU Jintang, et al. Hydrangea-like Ni/NiO/C composites derived from metal-organic frameworks with superior microwave absorption[J]. Carbon, 2021, 173: 69-79. |
| [14] | QIANG Rong, DU Yunchen, CHEN Dengtai, et al. Electromagnetic functionalized Co/C composites by in situ pyrolysis of metal-organic frameworks (ZIF-67)[J]. Journal of Alloys and Compounds, 2016, 681: 384-393. |
| [15] | FERRARI A C, ROBERTSON J. Interpretation of Raman spectra of disordered and amorphous carbon[J]. Physical Review B, 2000, 61(20): 14095-14107. |
| [16] | XIANG Zhen, SHI Yuyang, ZHU Xiaojie, et al. Metal-organic frameworks derived porous hollow Co/C microcubes with improved synergistic effect for high-efficiency microwave absorption[J]. Journal of Alloys and Compounds, 2021, 887: 161413. |
| [17] | ZHOU Xinfeng, JIA Zirui, FENG Ailing, et al. Synthesis of fish skin-derived 3D carbon foams with broadened bandwidth and excellent electromagnetic wave absorption performance[J]. Carbon, 2019, 152: 827-836. |
| [18] | MORENO-CASTILLA C, LÓPEZ-RAMÓN M V, CARRASCO-MARÍN F. Changes in surface chemistry of activated carbons by wet oxidation[J]. Carbon, 2000, 38(14): 1995-2001. |
| [19] | TONG Zhouyu, BI Yuxin, MA Mingliang, et al. Fabrication of flower-like surface Ni@Co3O4 nanowires anchored on RGO nanosheets for high-performance microwave absorption[J]. Applied Surface Science, 2021, 565: 150483. |
| [20] | REN Xiaohu, WANG Jingting, YIN Hongfeng, et al. Hierarchical CoFe2O4@PPy hollow nanocubes with enhanced microwave absorption[J]. Applied Surface Science, 2022, 575: 151752. |
| [21] | GANEGODA Hasitha, JENSEN David S, OLIVE Daniel, et al. Photoemission studies of fluorine functionalized porous graphitic carbon[J]. Journal of Applied Physics, 2012, 111(5): 053705. |
| [22] | WANG Xiangxue, YU Shuqi, WU Yihan, et al. The synergistic elimination of uranium (Ⅵ) species from aqueous solution using bi-functional nanocomposite of carbon sphere and layered double hydroxide[J]. Chemical Engineering Journal, 2018, 342: 321-330. |
| [23] | YANG Haibo, LIU Pengfei, YAN Fei, et al. A novel lead-free ceramic with layered structure for high energy storage applications[J]. Journal of Alloys and Compounds, 2019, 773: 244-249. |
| [24] | XU Ping, HAN Xijiang, WANG Chao, et al. Synthesis of electromagnetic functionalized nickel/polypyrrole core/shell composites[J]. The Journal of Physical Chemistry B, 2008, 112(34): 10443-10448. |
| [25] | QUAN Bin, LIANG Xiaohui, JI Guangbin, et al. Dielectric polarization in electromagnetic wave absorption: Review and perspective[J]. Journal of Alloys and Compounds, 2017, 728: 1065-1075. |
| [26] | WEN Guosheng, ZHAO Xiuchen, LIU Ying, et al. Facile synthesis of RGO/Co@Fe@Cu hollow nanospheres with efficient broadband electromagnetic wave absorption[J]. Chemical Engineering Journal, 2019, 372: 1-11. |
| [27] | WANG Ling, Mohamed ABDEL-ATY, MA Wanjing, et al. Quasi-vehicle-trajectory-based real-time safety analysis for expressways[J]. Transportation Research Part C: Emerging Technologies, 2019, 103: 30-38. |
| [28] | LIU Linlin, YIBIBULLA Tursunay, YANG Yang, et al. Design and microwave absorption characteristics of porous lamellar hard carbon materials[J]. Microporous and Mesoporous Materials, 2024, 369: 113041. |
| [29] | ZHANG You, XIE Yangyang, YANG Wanting, et al. Multidimensional and hierarchical design of biomass-derived carbon nanofiber networks for efficient microwave absorption[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 696: 134270. |
| [30] | LIU Shengjie, WANG Jun, ZHANG Bin, et al. Transformation of traditional carbon fibers from microwaves reflection to efficient absorption via carbon fiber microstructure modulation[J]. Carbon, 2024, 219: 118802. |
| [31] | WU Zhihong, CHANG Jijin, GUO Xinyu, et al. Honeycomb-like bamboo powders-derived porous carbon with low filler loading, high-performance microwave absorption[J]. Carbon, 2023, 215: 118415. |
| [32] | WANG Zhijun, LIU Xinglong, ZHANG Guangyuan, et al. Hierarchical porous structure for superior microwave absorption in biomass-derived carbon microcoils[J]. Ceramics International, 2023, 49(22): 35885-35897. |
| [33] | DAI Zhizheng, YU Xianli, WANG Yue, et al. Magnetic carbon fiber/reduced graphene oxide film for electromagnetic microwave absorption[J]. Ceramics International, 2023, 49(22): 37051-37058. |
| [1] | HAO Qingquan, SUI Lihua, LIU Jingru, ZHANG Shucai. Research advance on hydrothermal dechlorination technology for PVC waste plastics [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 4117-4125. |
| [2] | WANG Hui, LIU Jiaxu. Research progress on the synthesis of SSZ-39 zeolite and NH3-SCR application [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3892-3906. |
| [3] | ZHANG Wei, LIANG Yaocheng, WU Qiao, FU Yehao, YIN Yanshan, CHENG Shan, RUAN Min, LIU Tao, ZHOU Zhaoyi, ZHANG Kaikai, LI Dancong. Metal ion modified Cu-SSZ-13 catalyst for NH3-selective catalytic reduction of NO x [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3879-3891. |
| [4] | ZHOU Guoning, ZHU Haochen, HE Wenzhi, LI Guangming. Research progress on hydrothermal technology for agricultural waste treatment Ⅰ: Preparation of biocrude oil [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2297-2312. |
| [5] | ZHOU Guoning, ZHU Haochen, HE Wenzhi, LI Guangming. Research progress on hydrothermal technology for agricultural waste treatment Ⅱ: Hydrothermal carbonization [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2313-2327. |
| [6] | ZHANG Yi, YAO Qiuxiang, SUN Ming. Adsorption performance of natural clinoptilolite based analcime and its modifications on Pb2+ [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1726-1738. |
| [7] | LIANG Xuebin, WEI Yilin, ZHOU Zhening, ZHAN Hao, ZENG Zhiyong, LENG Lijian, PENG Haoyi. Enhanced biofuels from pharmaceutical process residues: Thermo-chemical conversion characteristics and mechanisms [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 477-489. |
| [8] | MU Ming, ZHAO Weiwei, CHEN Guangmeng, LIU Xiaoqing. Research progress of strain sensor based on laser-induced graphene [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4970-4979. |
| [9] | HU Rui, LI Xianru, PIAO Weiling, FENG Pan, LUO Lei, LUO Gang, WEI Huangzhao, LIU Zhengang, ZHANG Shicheng. Progress on the hydrothermal conversion equipment and technology of organic waste [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3672-3691. |
| [10] | TANG Jingliang, XING Tao, ZHEN Feng, ZHOU Zhengwei. Impact factors and mass flow analysis of hydrothermal humification of food waste digestate [J]. Chemical Industry and Engineering Progress, 2024, 43(12): 7033-7041. |
| [11] | BAI Yuting, WEI Xiaoyang, YOU Xuerui, ZHANG Zhichao, HANG Meirong, GUO Xiang, ZHAO Yiyan. A zinc coordination polymer fluorescence sensor for detecting Cu2+ in water [J]. Chemical Industry and Engineering Progress, 2024, 43(10): 5686-5692. |
| [12] | WANG Yiyan, WANG Darui, SHEN Zhenhao, HE Junlin, SUN Hongmin, YANG Weimin. Preparation and catalytic performance of fully crystalline MCM-22 zeolite catalyst [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 285-291. |
| [13] | WANG Xueting, GU Xia, XU Xianbao, ZHAO Lei, XUE Gang, LI Xiang. Effectiveness of hydrothermal pretreatment on valeric acid production during food waste fermentation [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4994-5002. |
| [14] | WANG Jingang, ZHANG Jianbo, TANG Xuejiao, LIU Jinpeng, JU Meiting. Research progress on modification of Cu-SSZ-13 catalyst for denitration of automobile exhaust gas [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4636-4648. |
| [15] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |