Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (8): 4821-4837.DOI: 10.16085/j.issn.1000-6613.2025-0549
• Frontiers and trends in process modeling and simulation • Previous Articles
CHEN Songsong1,2,3(
), BAO Aili3,4, HUO Feng3, HOU Yahui3, CUI Gaijing3,5, ZHANG Junping3(
)
Received:2025-04-14
Revised:2025-07-02
Online:2025-09-08
Published:2025-08-25
Contact:
ZHANG Junping
陈嵩嵩1,2,3(
), 鲍艾丽3,4, 霍锋3, 侯亚慧3, 崔改静3,5, 张军平3(
)
通讯作者:
张军平
作者简介:陈嵩嵩(1988—),男,博士研究生,高级工程师,研究方向为化学工程。E-mail: sschen@ipe.ac.cn。
基金资助:CLC Number:
CHEN Songsong, BAO Aili, HUO Feng, HOU Yahui, CUI Gaijing, ZHANG Junping. Application of artificial intelligence (AI) in the design of complex chemical engineering processes: Status, challenges and prospects[J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4821-4837.
陈嵩嵩, 鲍艾丽, 霍锋, 侯亚慧, 崔改静, 张军平. 人工智能(AI)在复杂化工过程设计中的应用:现状、挑战与展望[J]. 化工进展, 2025, 44(8): 4821-4837.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2025-0549
| 描述符 | 特征参量 | 优势 | 劣势 |
|---|---|---|---|
拓扑结构 描述符 | 分子的拓扑连接结构 | 计算相对简单快速,能反映分子的整体形状和连接性 | 计算量大,无法准确捕捉分子的三维结构信息和电子性质,相似拓扑结构区分能力有限 |
几何构型 描述符 | 分子的体积、表面积、形状因子 | 描述分子的大小和形状,与分子的物理性质如溶解性、渗透性等有一定关联 | 计算相对复杂,尤其是对于大分子或柔性分子 |
量子化学 描述符 | 分子轨道能、电子亲和能、电离能等 | 与分子的化学活性、反应性密切相关 | 通常比较耗时,对于大规模分子体系的计算成本较高 |
物化性质 描述符 | 熔点、沸点、溶解度、分配系数等 | 通常可以通过实验测量得到,具有较高的可靠性 | 实验测量可能需要耗费大量时间和资源 |
| 描述符 | 特征参量 | 优势 | 劣势 |
|---|---|---|---|
拓扑结构 描述符 | 分子的拓扑连接结构 | 计算相对简单快速,能反映分子的整体形状和连接性 | 计算量大,无法准确捕捉分子的三维结构信息和电子性质,相似拓扑结构区分能力有限 |
几何构型 描述符 | 分子的体积、表面积、形状因子 | 描述分子的大小和形状,与分子的物理性质如溶解性、渗透性等有一定关联 | 计算相对复杂,尤其是对于大分子或柔性分子 |
量子化学 描述符 | 分子轨道能、电子亲和能、电离能等 | 与分子的化学活性、反应性密切相关 | 通常比较耗时,对于大规模分子体系的计算成本较高 |
物化性质 描述符 | 熔点、沸点、溶解度、分配系数等 | 通常可以通过实验测量得到,具有较高的可靠性 | 实验测量可能需要耗费大量时间和资源 |
| 应用领域 | AI模型架构 | 研究内容 | 相关文献 |
|---|---|---|---|
| 分子识别 | ANN/BPNN/GCN/G-CNNs/UG-RNN/SVR/RT/MLP/VMC | 分子数据集构建、分子功能识别、同质/异质分子分类、结构与物化性质关联 | [ |
| 分子设计 | ANN/GNN/GCN/RF/SVM | 分子间相互作用、催化剂结构设计与优化 | [ |
| 物性预测 | ANN/GNN/pS-CNN/DL/MLP/RF/SVM/GAGBM/SE/RF/XRT | 密度、黏度、熔点、电导率、临界性质等热物性预测 | [ |
| 反应过程 | ANN/FNN/BPNN/SVR/GPR/GA/MLP | 反应网络、反应速率、条件优化 | [49-56,28-62] |
| 分离过程 | ANN/D-MPNN/AL/MLP/GPR/SPT | 相平衡、热力学函数、活度系数、交互参数 | [ |
| 流程设计 | ANN/DE/GA/MOEA/NSGA-Ⅱ/LLM | 分离序列、制备过程、PFD图绘制 | [ |
| 过程控制 | NN/BPNN/RBFNN/WNN/GA/NSGA-Ⅱ/RL/DRL/PSO/FGS | PID控制、精馏控制、反应控制、锅炉燃烧、PID图 | [ |
| 过程优化 | ANN/DNN/DBN/GA/NSGA-Ⅱ/GAGA/GP/MOWCA/MOGA/PSO/DL/NLP/FC-ResNet | 反应分离过程、精馏过程、氧气脱硫、碳捕集 | [ |
| 应用领域 | AI模型架构 | 研究内容 | 相关文献 |
|---|---|---|---|
| 分子识别 | ANN/BPNN/GCN/G-CNNs/UG-RNN/SVR/RT/MLP/VMC | 分子数据集构建、分子功能识别、同质/异质分子分类、结构与物化性质关联 | [ |
| 分子设计 | ANN/GNN/GCN/RF/SVM | 分子间相互作用、催化剂结构设计与优化 | [ |
| 物性预测 | ANN/GNN/pS-CNN/DL/MLP/RF/SVM/GAGBM/SE/RF/XRT | 密度、黏度、熔点、电导率、临界性质等热物性预测 | [ |
| 反应过程 | ANN/FNN/BPNN/SVR/GPR/GA/MLP | 反应网络、反应速率、条件优化 | [49-56,28-62] |
| 分离过程 | ANN/D-MPNN/AL/MLP/GPR/SPT | 相平衡、热力学函数、活度系数、交互参数 | [ |
| 流程设计 | ANN/DE/GA/MOEA/NSGA-Ⅱ/LLM | 分离序列、制备过程、PFD图绘制 | [ |
| 过程控制 | NN/BPNN/RBFNN/WNN/GA/NSGA-Ⅱ/RL/DRL/PSO/FGS | PID控制、精馏控制、反应控制、锅炉燃烧、PID图 | [ |
| 过程优化 | ANN/DNN/DBN/GA/NSGA-Ⅱ/GAGA/GP/MOWCA/MOGA/PSO/DL/NLP/FC-ResNet | 反应分离过程、精馏过程、氧气脱硫、碳捕集 | [ |
| [1] | CHIANG Leo H, BRAUN Birgit, WANG Zhenyu, et al. Towards artificial intelligence at scale in the chemical industry[J]. AIChE Journal, 2022, 68 (6), e17644. |
| [2] | HE Gaoqi, LIU Shun, LIU Zhuoran, et al. Prototype-based contrastive substructure identification for molecular property prediction[J]. Briefings in Bioinformatics, 2024, 25 (6), 565. |
| [3] | GERASIMOV Michail, SOTO Fernando A, WAGNER Janika, et al. Species distribution during solid electrolyte interphase formation on lithium using MD/DFT-parameterized kinetic Monte Carlo simulations[J]. Journal of Physical Chemistry C, 2023, 127 (10):4872-4886. |
| [4] | JALILI Seifollah, TAFAZZOLI Mohsen, Mehdi JALALI-HERAVI. Comparison of multiple linear regression and artificial neural networks in predicting octanol/water partition coefficient of a variety of organic molecules[J]. Journal of Theoretical & Computational Chemistry, 2003, 2 (3):335-344. |
| [5] | SAQIB Muhammad, RANI Mashal, MUBASHIR Tayyaba, et al. Designing of low band gap organic semiconductors through data mining from multiple databases and machine learning assisted property prediction[J]. Optical Materials, 2024, 150: 115295. |
| [6] | LI Miao, LI Jian, LU Yuchen, et al. Developing the QSPR model for predicting the storage lipid/water distribution coefficient of organic compounds[J]. Frontiers of Environmental Science & Engineering, 2020, 15 (2): 24. |
| [7] | FEI Jiangchi, MAO Qiming, PENG Lu, et al. The internal relation between quantum chemical descriptors and empirical constants of polychlorinated compounds[J]. Molecules, 2018, 23 (11):2935. |
| [8] | BOUNACEUR Roda, Nicolas BARTHéLEMY, DELORT Nicolas, et al. A multimodal learning model based on a QSPR approach for the estimation of RON, MON and CN, for any C, H, O hydrocarbons[J]. Fuel, 2025, 381:133438. |
| [9] | LI Ruichen, YE Haotian, JIANG Du, et al. A computational framework for neural network-based variational Monte Carlo with Forward Laplacian[J]. Nature Machine Intelligence, 2024, 6 (2):209-219. |
| [10] | YIN WanJian. Density functional theory-free descriptor for the practical discovery of perovskite catalysts[J]. Computational Materials Science, 2021, 193: 110342. |
| [11] | XIAO Y, SHEN C, ZHANG W B. Screening and prediction of metal-doped α-borophene monolayer for nitric oxide elimination[J]. Materials Today Chemistry, 2022, 25:100958. |
| [12] | KOHN W, BECKE A D, PARR R G. Density functional theory of electronic structure[J]. The Journal of Physical Chemistry, 1996, 100 (31): 12974-12980. |
| [13] | SCHERBAKOV K A, KONDRATIEV M S, SAMCHENKO A A, et al. The electronic structure properties of 20L-amino acids in neutral and zwitterion forms: Quantum-chemical calculations[J]. Biophysics, 2016, 61 (3):361-372. |
| [14] | 沈良骏, 叶世勇, 李前树. AM1半经验方法研究苯环在PEEK模型分子内的运动[J]. 高等学校化学学报,1994, 15 (7):1050-1054. |
| SHEN Liangjun, YE Shiyong, LI Qianshu. AM1 scmiempirical method for study the motion of phenyl rings in model compounds of PEEK[J]. Chemical Journal of Chinese Universities, 1994, 15(7): 1050-1054. | |
| [15] | BREGANTE Daniel T, CHAN Matthew C, TAN Jun Zhi, et al. The shape of water in zeolites and its impact on epoxidation catalysis[J]. Nature Catalysis, 2021, 4 (9): 797-808. |
| [16] | YAFFE Denise, COHEN Yoram, ESPINOSA Gabriela, et al. Fuzzy ARTMAP and back-propagation neural networks based quantitative structure-property relationships (QSPRs) for octanol-water partition coefficient of organic compounds[J]. Journal of Chemical Information and Computer Sciences, 2002, 42 (2):162-183. |
| [17] | WAN Zhongyu, WANG Quande, LIANG Jinhu. Accurate prediction of standard enthalpy of formation based on semiempirical quantum chemistry methods with artificial neural network and molecular descriptors[J]. International Journal of Quantum Chemistry, 2020, 121 (2):e26441. |
| [18] | 任嘉辉, 刘豫, 刘朝, 等. 基于分子指纹和拓扑指数的工质临界温度理论预测[J]. 化工学报, 2022, 73 (04):1493-1500. |
| REN Jiahui, LIU Yu, LIU Chao, et al. Critical temperature prediction of working fluids using molecular fingerprints and topological indices[J]. CIESC Journal, 2022, 73(4): 1493-1500. | |
| [19] | LEE Hao-Yeh, YANG Tsung-Hua, Lung CHIEN I,et al. Grade transition using dynamic neural networks for an industrial high-pressure ethylene-vinyl acetate (EVA) copolymerization process[J]. Computers & Chemical Engineering, 2009, 33 (8): 1371-1378. |
| [20] | SUCH Felipe Petroski, Shagan SAH, DOMINGUEZ Miguel Alexander, et al. Robust spatial filtering with graph convolutional neural networks[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(6): 884-896. |
| [21] | COLEY Connor W, BARZILAY Regina, GREEN William H, et al. Convolutional embedding of attributed molecular graphs for physical property prediction[J]. Journal of Chemical Information and Modeling, 2017, 57(8): 1757-1772. |
| [22] | LUSCI Alessandro, POLLASTRI Gianluca, BALDI Pierre. Deep architectures and deep learning in chemoinformatics: The prediction of aqueous solubility for drug-like molecules[J]. Journal of Chemical Information and Modeling, 2013, 53(7): 1563-1575. |
| [23] | MAZHEIKA Aliaksei, WANG Yanggang, VALERO Rosendo, et al. Artificial-intelligence-driven discovery of catalyst genes with application to CO2 activation on semiconductor oxides[J]. Nature Communications, 2022, 13(1): 419. |
| [24] | ZHENG Anhui, WANG Yuxuan, ZHANG Fangfei, et al. Data-driven design and controllable synthesis of Pt/carbon electrocatalysts for H2 evolution[J]. iScience, 2021, 24(12): 103430. |
| [25] | CHENG Lei, TANG Yawen, OSTRIKOV Kostya, et al. Single-atom heterogeneous catalysts: Human- and AI-driven platform for augmented designs, analytics and reality-enabled manufacturing[J]. Angewandte Chemie, 2024, 136(5): e202313599. |
| [26] | MACE Samuel, XU Yingjian, NGUYEN Bao N. Automated transition metal catalysts discovery and optimisation with AI and machine learning[J]. ChemCatChem, 2024, 16(10): e202301475. |
| [27] | Jorge BENAVIDES-HERNÁNDEZ, DUMEIGNIL Franck. From characterization to discovery: Artificial intelligence, machine learning and high-throughput experiments for heterogeneous catalyst design[J]. ACS Catalysis, 2024, 14(15): 11749-11779. |
| [28] | NIU Zhiqiang, ZHAO Wanhui, DENG Hao, et al. Generative artificial intelligence for designing multi-scale hydrogen fuel cell catalyst layer nanostructures[J]. ACS Nano,2024, 18 (31): 20504-20517. |
| [29] | GAO Yuchen, YUAN Yuhang, HUANG Suozhi, et al. A knowledge-data dual-driven framework for predicting the molecular properties of rechargeable battery electrolytes[J]. Angewandte Chemie International Edition, 2025, 64(4): e202416506. |
| [30] | ROOSTA Ahmadreza, HAGHBAKHSH Reza, DUARTE Ana Rita C, et al. Machine learning coupled with group contribution for predicting the density of deep eutectic solvents[J]. Fluid Phase Equilibria, 2023, 565: 113672. |
| [31] | Ziyu LYU, GU Chao, Ziyang LYU, et al. Composition engineering on the local structure and viscosity of the CaO-SiO2-Al2O3-P2O5-FeO slag by machine learning methods[J]. Crystals, 2022, 12(10): 1338. |
| [32] | LIANG Tao, LIU Wei, TAN Kai, et al. Advancing ionic liquid research with pSCNN: A novel approach for accurate normal melting temperature predictions[J]. ACS Omega, 2024, 9(29): 31694-31702. |
| [33] | GAO Tianyu, JI Yujin, LIU Cheng, et al. Molecular descriptor-enhanced graph neural network for energetic molecular property prediction[J]. Science China Materials, 2024, 67(4): 1243-1252. |
| [34] | CAO Xinyu, GONG Ming, TULA Anjan, et al. An improved machine learning model for pure component property estimation[J]. Engineering, 2024, 39: 61-73. |
| [35] | LI Chunyan, FENG Jihua, LIU Shihu, et al. A novel molecular representation learning for molecular property prediction with a multiple SMILES-based augmentation[J]. Computational Intelligence and Neuroscience, 2022, 2022(1): 8464452. |
| [36] | WEN Huaqiang, SU Yang, WANG Zihao, et al. A systematic modeling methodology of deep neural network-based structure-property relationship for rapid and reliable prediction on flashpoints[J]. AIChE Journal, 2022, 68(1): e17402. |
| [37] | SHARMA Anshu, LI Li, GARG Aman, et al. Probe into the volumetric properties of binary mixtures: Essence of regression-based machine learning algorithms[J]. Journal of Molecular Liquids, 2024, 399: 124498. |
| [38] | DHAKAL Pratik, SHAH Jindal K. Developing machine learning models for ionic conductivity of imidazolium-based ionic liquids[J]. Fluid Phase Equilibria, 2021, 549: 113208. |
| [39] | ZHANG Biao, SUDRE Guillaume, QUINTARD Guilhem, et al. Imidazolium-based poly(ionic liquid)/ionic liquid solutions: Rheology, structuration and ionic transport properties[J]. Polymer, 2021, 237: 124305. |
| [40] | 张娜娜, 李圆圆, 贾文, 等. 几种离子液体的制备及性能表征[J]. 辽宁化工, 2021, 50 (12):1781-1784. |
| ZHANG Nana, LI Yuanyuan, JIA Wen, et al. Preparation and characterization of several ionic liquids[J]. Liaoning Chemical Industry. 2021, 50 (12), 1781-1784. | |
| [41] | ZHAO Nan, JACQUEMIN Johan. The development of the UNIFAC-CONDUCT model as a novel approach for the estimation of the conductivity of pure ionic liquids[J]. Fluid Phase Equilibria, 2017, 449: 60-67. |
| [42] | LAZZÚS Juan A. A group contribution method to predict the thermal decomposition temperature of ionic liquids[J]. Journal of Molecular Liquids, 2012, 168: 87-93. |
| [43] | WANG Chenyang, SONG Cancan, ZHOU Guobing, et al. Developing machine learning models for predicting multiple physical properties of ionic liquids through a combined constitution-structure-interaction descriptor[J]. Journal of Chemical & Engineering Data, 2024, 69(12): 4350-4361. |
| [44] | LING Yulong, LI Kun, WANG Mi, et al. Revisiting the structure, interaction, and dynamical property of ionic liquid from the deep learning force field[J]. Journal of Power Sources, 2023, 555: 232350. |
| [45] | Dorota WILEŃSKA, ANUSIEWICZ Iwona, FREZA Sylwia, et al. Predicting the viscosity and electrical conductivity of ionic liquids on the basis of theoretically calculated ionic volumes[J]. Molecular Physics, 2015, 113(6): 630-639. |
| [46] | Jonathan NILSSON-HALLÉN, Bodil AHLSTRÖM, MARCZEWSKI Maciej, et al. Ionic liquids: A simple model to predict ion conductivity based on DFT derived physical parameters[J]. Frontiers in Chemistry, 2019, 7: 126. |
| [47] | KUMAR Ashwani, KUMAR Parvin. Quantitative structure toxicity analysis of ionic liquids toward acetylcholinesterase enzyme using novel QSTR models with index of ideality of correlation and correlation contradiction index[J]. Journal of Molecular Liquids, 2020, 318: 114055. |
| [48] | ZHANG Lei, YE Lili, WANG Fan, et al. Prediction of hydrogen abstraction rate constants at the allylic site between alkenes and OH with multiple machine learning models[J]. The Journal of Physical Chemistry A, 2024, 128(4): 761-772. |
| [49] | YU Jinhui, SHAN Dezun, SONG Hongwei, et al. A novel hybrid machine learning model for predicting rate constants of the reactions between alkane and CH3 radical[J]. Fuel, 2022, 322: 124150. |
| [50] | YU Jinhui, RUAN Shanshan, SONG Hongwei, et al. Machine learning rate constants of hydrogen abstraction reactions between ester and H atom[J]. Combustion and Flame, 2023, 255: 112901. |
| [51] | ZHANG Yu, XIA Min, SONG Hongwei, et al. Predicting rate constants of alkane cracking reactions using machine learning[J]. The Journal of Physical Chemistry A, 2024, 128(12): 2383-2392. |
| [52] | HOUSTON Paul L, NANDI Apurba, BOWMAN Joel M. A Machine learning approach for prediction of rate constants[J]. Journal of Physical Chemistry Letters 2019, 10 (17), 5250-5258. |
| [53] | HOUSTON Paul L, NANDI Apurba, BOWMAN Joel M. A machine learning approach for rate constants. Ⅲ. Application to the Cl(2P)+CH4 → CH3+HCl reaction[J]. The Journal of Physical Chemistry A, 2022, 126(33): 5672-5679. |
| [54] | PAUL Shyeni, ZHU Yunqing, ROMAIN Charles, et al. Ring-opening copolymerization (ROCOP): Synthesis and properties of polyesters and polycarbonates[J]. Chemical Communications, 2015, 51(30): 6459-6479. |
| [55] | LU Junhui, ZHANG Huimin, YU Jinhui, et al. Predicting rate constants of hydroxyl radical reactions with alkanes using machine learning[J]. Journal of Chemical Information and Modeling, 2021, 61(9): 4259-4265. |
| [56] | CHUNG Yunsie, GREEN William H. Machine learning from quantum chemistry to predict experimental solvent effects on reaction rates[J]. Chemical Science, 2024, 15(7): 2410-2424. |
| [57] | LI Minghan, ZHAO Lingling, JIN Shuo, et al. Process schemes of ethanol coupling to C4 olefins based on a genetic algorithm for back propagation neural network optimization[J]. Heliyon, 2022, 8(12): e12301. |
| [58] | NASR Noha, HAFEZ Hisham, NAGGAR M Hesham EL, et al. Application of artificial neural networks for modeling of biohydrogen production[J]. International Journal of Hydrogen Energy, 2013, 38(8): 3189-3195. |
| [59] | ZAMANIYAN Akbar, JODA Fatemeh, BEHROOZSARAND Alireza, et al. Application of artificial neural networks (ANN) for modeling of industrial hydrogen plant[J]. International Journal of Hydrogen Energy, 2013, 38(15): 6289-6297. |
| [60] | GHASEMZADEH Kamran, Abbas AGHAEINEJAD-MEYBODI, BASILE Angelo. Hydrogen production as a green fuel in silica membrane reactor: Experimental analysis and artificial neural network modeling[J]. Fuel, 2018, 222: 114-124. |
| [61] | GHASEMZADEH Kamran, AHMADNEJAD Farzad, Abbas AGHAEINEJAD-MEYBODI, et al. Hydrogen production by a PdAg membrane reactor during glycerol steam reforming: ANN modeling study[J]. International Journal of Hydrogen Energy, 2018, 43(15): 7722-7730. |
| [62] | Stefan SIMIĆ, Erna ZUKIĆ, SCHMERMUND Luca, et al. Shortening synthetic routes to small molecule active pharmaceutical ingredients employing biocatalytic methods[J]. Chemical Reviews, 2022, 122(1): 1052-1126. |
| [63] | WIRNSBERGER Peter, IBARZ Borja, PAPAMAKARIOS George. Estimating Gibbs free energies via isobaric-isothermal flows[J]. Machine Learning: Science and Technology, 2023, 4(3): 035039. |
| [64] | CHEN Guzhong, SONG Zhen, QI Zhiwen, et al. Neural recommender system for the activity coefficient prediction and UNIFAC model extension of ionic liquid-solute systems[J]. AIChE Journal, 2021, 67(4): e17171. |
| [65] | ABRANCHES Dinis O, MAGINN Edward J, COLÓN Yamil J. Activity coefficient acquisition with thermodynamics-informed active learning for phase diagram construction[J]. AIChE Journal, 2023, 69(8): e18141. |
| [66] | FELTON Kobi C, Hashem BEN-SAFAR, LAPKIN A.Lapkin DeepGamma: A deep learning model for activity coefficient prediction[C]//1st Annual AAAI Workshop on AI to Accelerate Science and Engineering (AI2ASE), 2022. |
| [67] | WINTER Benedikt, WINTER Clemens, SCHILLING Johannes, et al. A smile is all you need: Predicting limiting activity coefficients from SMILES with natural language processing[J]. Digital Discovery, 2022, 1(6): 859-869. |
| [68] | WINTER Benedikt, WINTER Clemens, ESPER Timm, et al. SPT-NRTL: A physics-guided machine learning model to predict thermodynamically consistent activity coefficients[J]. Fluid Phase Equilibria, 2023, 568: 113731. |
| [69] | HU Zehua, LI Peilong, LIU Yefei. Enhancing the performance of evolutionary algorithm by differential evolution for optimizing distillation sequence[J]. Molecules, 2022, 27(12): 3802. |
| [70] | MAYEVSKIY Mark, FROLKOVA Anastasia, FROLKOVA Alla. Separation and purification of methyl isobutyl ketone from acetone+isopropanol+water+methyl isobutyl ketone+methyl isobutyl carbinol+diisobutyl ketone mixture[J]. ACS Omega, 2020, 5(39): 25365-25370. |
| [71] | BALHORN Lukas Schulze, CABALLERO Marc, SCHWEIDTMANN Artur M. Toward autocorrection of chemical process flowsheets using large language models[J]. Computer Aided Chemical Engineering, 2024, 53: 3109-3114. |
| [72] | VOGEL Gabriel, SCHULZE BALHORN Lukas, SCHWEIDTMANN Artur M. Learning from flowsheets: A generative transformer model for autocompletion of flowsheets[J]. Computers & Chemical Engineering, 2023, 171: 108162. |
| [73] | HIRTREITER Edwin, BALHORN Lukas Schulze, SCHWEIDTMANN Artur M. Toward automatic generation of control structures for process flow diagrams with large language models[J]. AIChE Journal, 2024, 70(1): e18259. |
| [74] | BALHORN Lukas Schulze, HIRTREITER Edwin, LUDERER Lynn, et al. Data augmentation for machine learning of chemical process flowsheets[J]. Computer Aided Chemical Engineering, 2023, 52: 2011-2016. |
| [75] | VOGEL Gabriel, HIRTREITER Edwin, SCHULZE BALHORN Lukas, et al. SFILES 2.0: An extended text-based flowsheet representation[J]. Optimization and Engineering, 2023, 24(4): 2911-2933. |
| [76] | BOIKO Daniil A, MACKNIGHT Robert, KLINE Ben, et al. Autonomous chemical research with large language models[J]. Nature, 2023, 624(7992): 570-578. |
| [77] | ZHANG Wei, WANG Qinggong, KONG Xiangtai, et al. Fine-tuning large language models for chemical text mining[J]. Chemical Science, 2024, 15(27): 10600-10611. |
| [78] | BUBEL Martin, LUDL Patrick Otto, SEIDEL Tobias, et al. A modular approach for surrogate modeling of flowsheets[J]. Chemie Ingenieur Technik, 2021, 93(12): 1987-1997. |
| [79] | DUTTA Debaprasad, UPRETI Simant R. Artificial intelligence-based process control in chemical, biochemical, and biomedical engineering[J]. The Canadian Journal of Chemical Engineering, 2021, 99(11): 2467-2504. |
| [80] | BEHROOZSARAND Alireza, SHAFIEI Sirous. Control of TAME reactive distillation using non-dominated sorting genetic algorithm-Ⅱ[J]. Journal of Loss Prevention in the Process Industries, 2012, 25(1): 192-201. |
| [81] | BEHROOZSARAND Alireza, WOOD David A. Evolutionary algorithms for controller tuning of tert-amyl-methyl-ether reactive distillation[J]. Journal of Systems Science and Systems Engineering, 2020, 29(3): 325-343. |
| [82] | EL-GENDY Eman M, SAAFAN Mahmoud M, ELKSAS Mohamed S, et al. Applying hybrid genetic-PSO technique for tuning an adaptive PID controller used in a chemical process[J]. Soft Computing, 2020, 24(5): 3455-3474. |
| [83] | LIU Jingwei, LI Tianyue, CHEN Jiaming, et al. Research on improved intelligent control processes based on three kinds of artificial intelligence[J]. Processes, 2020, 8(9): 1042. |
| [84] | MAZINAN A H. A new algorithm to AI-based predictive control scheme for a distillation column system[J]. The International Journal of Advanced Manufacturing Technology, 2013, 66(9): 1379-1388. |
| [85] | FREUDENMANN Thomas, GEHRMANN Hans-Joachim, ALEKSANDROV Krasimir, et al. Hybrid models for efficient control, optimization, and monitoring of thermo-chemical processes and plants[J]. Processes, 2021, 9(3): 515. |
| [86] | MA Yan, ZHU Wenbo, BENTON Michael G, et al. Continuous control of a polymerization system with deep reinforcement learning[J]. Journal of Process Control, 2019, 75: 40-47. |
| [87] | DUTTA Debaprasad, UPRETI Simant R. A reinforcement learning-based transformed inverse model strategy for nonlinear process control[J]. Computers & Chemical Engineering, 2023, 178: 108386. |
| [88] | LIU Jingjun, DAOUTIDIS Prodromos, YANG Bolun. Process design and optimization for etherification of glycerol with isobutene[J]. Chemical Engineering Science, 2016, 144: 326-335. |
| [89] | ZHANG Ruihang, WANG Zexin, WEI Xiaoming, et al. Modelling and optimization of ethane recovery process from natural gas via ZIF-8/water-glycol slurry with low energy consumption[J]. Energy, 2023, 263: 125645. |
| [90] | THAKUR Amit K, GUPTA Santosh K, KUMAR Rahul, et al. Multi-objective optimization of an industrial slurry phase ethylene polymerization reactor[J]. International Journal of Chemical Reactor Engineering, 2022, 20(6): 649-659. |
| [91] | YOU Xinqiang, GU Jinglian, GERBAUD Vincent, et al. Optimization of pre-concentration, entrainer recycle and pressure selection for the extractive distillation of acetonitrile-water with ethylene glycol[J]. Chemical Engineering Science, 2018, 177: 354-368. |
| [92] | CUI Yue, ZHANG Zhishan, SHI Xiaojing, et al. Triple-column side-stream extractive distillation optimization via simulated annealing for the benzene/isopropanol/water separation[J]. Separation and Purification Technology, 2020, 236: 116303. |
| [93] | TARAFDER Abhijit, LEE Bennett C S, Ajay K RAY, et al. Multiobjective optimization of an industrial ethylene reactor using a nondominated sorting genetic algorithm[J]. Industrial & Engineering Chemistry Research, 2005, 44(1): 124-141. |
| [94] | 郭艳东, 苏 航, 陈嵩嵩, 等. 煤基甲醇芳构化分离过程多目标优化[J]. 过程工程学报, 2021, 21(1): 71-82. |
| GUO Yandong, SU Hang, CHEN Songsong, et al. Multi-objective optimization of separation unit for coal-based methanol aromatization[J]. Chinese Journal of Process Engineering, 2021, 21 (1): 71-82. | |
| [95] | ZHAO Fei, XU Zaifeng, ZHAO Jiangang, et al. Process design and multi-objective optimization for separation of ternary mixtures with double azeotropes via integrated quasi-continuous pressure-swing batch distillation[J]. Separation and Purification Technology, 2021, 276: 119288. |
| [96] | HEIDARI Ali Asghar, PAHLAVANI Parham. An efficient modified grey wolf optimizer with Lévy flight for optimization tasks[J]. Applied Soft Computing, 2017, 60: 115-134. |
| [97] | RAMIREZ ATENCIA Cristian, Javier DEL SER, CAMACHO David. Weighted strategies to guide a multi-objective evolutionary algorithm for multi-UAV mission planning[J]. Swarm and Evolutionary Computation, 2019, 44: 480-495. |
| [98] | LIN Qiuzhen, MA Yueping, CHEN Jianyong, et al. An adaptive immune-inspired multi-objective algorithm with multiple differential evolution strategies[J]. Information Sciences, 2018, 430: 46-64. |
| [99] | KASHAN Ali Husseinzadeh, KESHMIRY Marziehsadat, DAHOOIE Jalil Heidary, et al. A simple yet effective grouping evolutionary strategy (GES) algorithm for scheduling parallel machines[J]. Neural Computing and Applications, 2018, 30(6): 1925-1938. |
| [100] | GOEL Rajeev, MAINI Raman. A hybrid of ant colony and firefly algorithms (HAFA) for solving vehicle routing problems[J]. Journal of Computational Science, 2018, 25: 28-37. |
| [101] | YILDIZ Ali R. A new hybrid differential evolution algorithm for the selection of optimal machining parameters in milling operations[J]. Applied Soft Computing, 2013, 13(3): 1561-1566. |
| [102] | YANG Ao, KONG ZONG yang, SUNARSO Jaka. Design and optimisation of novel hybrid side-stream reactive-extractive distillation for recovery of isopropyl alcohol and ethyl acetate from wastewater[J]. Chemical Engineering Journal, 2023, 451: 138563. |
| [103] | MIAO Guang, ZHUO Kaisheng, LI Guoqing, et al. An advanced optimization strategy for enhancing the performance of a hybrid pressure-swing distillation process in effective binary-azeotrope separation[J]. Separation and Purification Technology, 2022, 282: 120130. |
| [104] | ZHOU Zixiang, GUO Yandong, CHEN Songsong, et al. A new multi-objective optimization algorithm for separation processes[J]. Chemical Engineering Research and Design, 2025, 213: 159-171. |
| [105] | SAFFARI Peyman Roudgar, SALARIAN Hesamoddin, LOHRASBI Ali, et al. Optimization of a thermal cracking reactor using genetic algorithm and water cycle algorithm[J]. ACS Omega, 2022, 7(15): 12493-12508. |
| [106] | ZHOU Xin, LI Zhiyang, FENG Xiang, et al. A hybrid deep learning framework driven by data and reaction mechanism for predicting sustainable glycolic acid production performance[J]. AIChE Journal, 2023, 69(7): e18083. |
| [107] | XU Wei, WANG Yuan, ZHANG Dongrui, et al. Transparent AI-assisted chemical engineering process: Machine learning modeling and multi-objective optimization for integrating process data and molecular-level reaction mechanisms[J]. Journal of Cleaner Production, 2024, 448: 141412. |
| [108] | SONG Shuang, XU Xinyao, LAN Haoxiang, et al. Design of co-cured multi-component thermosets with enhanced heat resistance, toughness, and processability via a machine learning approach[J]. Macromolecular Rapid Communications, 2024, 45(19): 2400337. |
| [109] | 何林, 贺常晴, 隋红. 人工智能驱动新型界面分离材料的创制[J]. 化工进展, 2024, 43(4): 1649-1654. |
| HE Lin, HE Changqing, SUI Hong. Prospects for the creation of novel interfacial separation materials driven by artificial intelligence[J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1649-1654. | |
| [110] | WANG Shifa, MO Peilin, LI Dengfeng, et al. Intelligent algorithms enable photocatalyst design and performance prediction[J]. Catalysts, 2024, 14(4): 217. |
| [111] | GENG Zhiqiang, WANG Zun, ZHU Qunxiong, et al. Multi-objective operation optimization of ethylene cracking furnace based on AMOPSO algorithm[J]. Chemical Engineering Science, 2016, 153: 21-33. |
| [112] | RAHIMI Mohammad, MOOSAVI Seyed Mohamad, SMIT Berend, et al. Toward smart carbon capture with machine learning[J]. Cell Reports Physical Science, 2021, 2(4): 100396. |
| [113] | DE Riju, BHARTIYA Sharad, SHASTRI Yogendra. Multi-objective optimization of integrated biodiesel production and separation system[J]. Fuel, 2019, 243: 519-532. |
| [1] | JIA Ziting, CUI Ziyuan, WANG Yufei. Optimization strategy for regularizing flexible plant layout [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4669-4679. |
| [2] | YANG Ao, DENG Wei, LI Yong, LUO Jing, WANG Zilin, ZHANG Jun, SHEN Weifeng. Multi-objective optimization design of triple-column pressure-swing distillation for separating ternary azeotropic mixture tetrahydrofuran/methanol/ethanol by thermodynamic topology theory [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4582-4593. |
| [3] | LIU Yanyan, LI Feiquan, LIU Dong, WANG Juntao, LUO Xue. Molecular simulation study on the interfacial properties of recycled asphalt-aggregate at the nanoscale [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4302-4310. |
| [4] | LIU Dongyang, HE Fupeng, QIU Wei, ZHOU Tianhang, ZHAO Liang, XU Chunming. Low-carbon intelligent transformation: Future development and challenges in the energy and chemical sectors [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3305-3323. |
| [5] | YANG Sen, XUE Zijie, WANG Yufei, ZHAO Liang, XU Chunming. Low carbon transformation and research status of chemical industry based on green hydrogen [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3288-3304. |
| [6] | LI Ming, ZHOU Yi, NAN Lan, YE Xiaosheng. Advances in automatic optimization of continuous synthesis [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3190-3198. |
| [7] | YAO Ruwei, SONG Yueyin, NIU Qinqin, LI Congming. Na-S co-modified iron catalysts for CO2 hydrogenation to C2+ alcohols [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3154-3162. |
| [8] | MAO Ningxuan, WAN Xiaowei, JU Jie, HU Yanjie, JIANG Hao. Numerical simulation and structural optimization of flow field in industrial gas-solid fluidized beds based on CFD-PBM [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 13-20. |
| [9] | SUN Qichao, NIE Meihua, WU Lianying, HU Yangdong. Optimal design and scheduling of integrated wind-photovoltaic-storage hydropower cogeneration system [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4882-4891. |
| [10] | CAO Shuyang, SHI Jingbo, DONG Youming, LYU Jianxiong. Water adsorption and desorption isotherms and thermodynamic properties of Eucalyptus obliqua woods at different temperatures [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5095-5105. |
| [11] | WU Yuqi, LI Jiangtao, DING Jianzhi, SONG Xiulan, SU Bingqin. Calcined Mg/Al hydrotalcites for CO2 removal in anaerobic digestion biogas: Performances and mechanisms [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5250-5261. |
| [12] | XIONG Yuanfan, LI Huashan, GONG Yulie. Multi-objective optimal design of evaporative condenser using zeotropic working fluid [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 2950-2960. |
| [13] | LIU Siyu, YANG Juan, CHEN Pei, CHEN Zutian, YAN Bin, LIU Yuhong, QIU Jieshan. Tuning N-doped configurations of N-enriched porous carbon nanosheets for high-performance zinc ion storage [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2673-2683. |
| [14] | HE Lin, HE Changqing, SUI Hong. Prospects for the creation of novel interfacial separation materials driven by artificial intelligence [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1649-1654. |
| [15] | CHEN Junxian, LIU Zhen, JIAO Wenlei, ZHANG Tianyu, LYU Jiameng, JI Zhongli. Measurement method of liquid drop concentration in natural gas pipeline based on microwave resonance principle [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 734-742. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |