| [1] |
SUN Hong. Hydrogen energy is arousing great attention all over the world[J]. International Journal of Hydrogen Energy, 2021, 46(3): 2845-2846.
|
| [2] |
HASSAN Qusay, ALGBURI Sameer, JASZCZUR Marek, et al. Hydrogen role in energy transition: A comparative review[J]. Process Safety and Environmental Protection, 2024, 184: 1069-1093.
|
| [3] |
HASSAN Qusay, SAMEEN Aws Zuhair, SALMAN Hayder M, et al. Large-scale green hydrogen production via alkaline water electrolysis using solar and wind energy[J]. International Journal of Hydrogen Energy, 2023, 48(88): 34299-34315.
|
| [4] |
赵晓东, 文婕, 于明伟, 等. 氨能源技术的开发及前景展望[J]. 现代化工, 2023, 43(4): 50-53, 59.
|
|
ZHAO Xiaodong, WEN Jie, YU Mingwei, et al. Development and prospect of ammonia energy technology[J]. Modern Chemical Industry, 2023, 43(4): 50-53, 59.
|
| [5] |
邹才能, 李建明, 张茜, 等. 氢能工业现状、技术进展、挑战及前景[J]. 天然气工业, 2022, 42(4): 1-20.
|
|
ZOU Caineng, LI Jianming, ZHANG Xi, et al. Industrial status, technological progress, challenges and prospects of hydrogen energy[J]. Natural Gas Industry, 2022, 42(4): 1-20.
|
| [6] |
宁翔. 我国工业制氢技术路线研究及展望[J]. 能源研究与利用, 2020(1): 52-55.
|
|
NING Xiang. Research and prospect of China’s industrial hydrogen production technology route[J]. Energy Research & Utilization, 2020(1): 52-55.
|
| [7] |
GIDDEY S, BADWAL S P S, MUNNINGS C, et al. Ammonia as a renewable energy transportation media[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(11): 10231-10239.
|
| [8] |
LAMB Krystina E, DOLAN Michael D, KENNEDY Danielle F. Ammonia for hydrogen storage; A review of catalytic ammonia decomposition and hydrogen separation and purification[J]. International Journal of Hydrogen Energy, 2019, 44(7): 3580-3593.
|
| [9] |
CHANG Fei, GAO Wenbo, GUO Jianping, et al. Emerging materials and methods toward ammonia-based energy storage and conversion[J]. Advanced Materials, 2021, 33(50): 2005721.
|
| [10] |
COMOTTI Massimiliano, FRIGO Stefano. Hydrogen generation system for ammonia-hydrogen fuelled internal combustion engines[J]. International Journal of Hydrogen Energy, 2015, 40(33): 10673-10686.
|
| [11] |
PETERS Stefan, ABDEL-MAGEED ALI M, WOHLRAB Sebastian. Thermocatalytic ammonia decomposition-status and current research demands for a carbon-free hydrogen fuel technology[J]. ChemCatChem, 2023, 15(2): e202201185.
|
| [12] |
VALERA-MEDINA A, XIAO H, OWEN-JONES M, et al. Ammonia for power[J]. Progress in Energy and Combustion SCIENCE, 2018, 69: 63-102.
|
| [13] |
Kyunghyun RYU, ZACHARAKIS-JUTZ George E, KONG Song-Charng. Performance enhancement of ammonia-fueled engine by using dissociation catalyst for hydrogen generation[J]. International Journal of Hydrogen Energy, 2014, 39(5): 2390-2398.
|
| [14] |
LEE J H, KIM J H, PARK J H, et al. Studies on properties of laminar premixed hydrogen-added ammonia/air flames for hydrogen production[J]. International Journal of Hydrogen Energy, 2010, 35(3): 1054-1064.
|
| [15] |
CHEIN Rei-Yu, CHEN Yen-Cho, CHANG Chia-San, et al. Numerical modeling of hydrogen production from ammonia decomposition for fuel cell applications[J]. International Journal of Hydrogen Energy, 2010, 35(2): 589-597.
|
| [16] |
王一帆, 段学志, 吴炜, 等. 管壳式自热型氨分解反应器模拟分析[J]. 化工学报, 2015, 66(8): 3169-3176.
|
|
WANG Yifan, DUAN Xuezhi, WU Wei, et al. Modeling and analysis of concentric self-thermal fixed-bed reactor for ammonia decomposition[J]. CIESC Journal, 2015, 66(8): 3169-3176.
|
| [17] |
BADESCU Viorel. Optimal design and operation of ammonia decomposition reactors[J]. International Journal of Energy Research, 2020, 44(7): 5360-5384.
|
| [18] |
TAKAHASHI Atsushi, FUJITANI Tadahiro. Kinetic-model-based design of industrial reactor for catalytic hydrogen production via ammonia decomposition[J]. Chemical Engineering Research and Design, 2021, 165: 333-340.
|
| [19] |
POURALI Mostafa, ESFAHANI Javad Abolfazli, JAHANGIR Hosein, et al. Ammonia decomposition in a porous catalytic reactor to enable hydrogen storage: Numerical simulation, machine learning, and response surface methodology[J]. Journal of Energy Storage, 2022, 55: 105804.
|
| [20] |
YUAN Peikai, CHEN Longwei, LIU Chengzhou, et al. Numerical studies on hydrogen production from ammonia thermal cracking with catalysts[J]. Energies, 2023, 16(13): 5196.
|
| [21] |
CHIUTA Steven, EVERSON Raymond C, NEOMAGUS Hein W J P, et al. A modelling evaluation of an ammonia-fuelled microchannel reformer for hydrogen generation[J]. International Journal of Hydrogen Energy, 2014, 39(22): 11390-11402.
|
| [22] |
YUAN Peikai, CHEN Longwei, LIU Chengzhou, et al. Numerical studies on hydrogen production from ammonia thermal cracking with catalysts[J]. Energies, 2023, 16(13): 5196.
|
| [23] |
CHELLAPPA A S, FISCHER C M, THOMSON W J. Ammonia decomposition kinetics over Ni-Pt/Al2O3 for PEM fuel cell applications[J]. Applied Catalysis A: General, 2002, 227(1/2): 231-240.
|
| [24] |
梁斌. 化学反应工程[M]. 北京: 科学出版社, 2003.
|
|
LIANG Bin. Chemical reaction engineering[M]. Beijing: Science Press, 2003.
|
| [25] |
WILKE C R. A viscosity equation for gas mixtures[J]. The Journal of Chemical Physics, 1950, 18(4): 517-519.
|
| [26] |
LINDSAY Alexander L, BROMLEY Le Roy A. Thermal conductivity of gas mixtures[J]. Industrial & Engineering Chemistry, 1950, 42(8): 1508-1511.
|
| [27] |
CHEN Bohong, WANG Long, WANG Feng. Study on methane steam reforming coupling high-temperature exhaust heat utilization for hydrogen production[J]. International Journal of Green Energy, 2019, 16(12): 867-877.
|
| [28] |
SRIVASTAVA Alankrit, KUMAR Parmod, DHAR Atul. A numerical study on methanol steam reforming reactor utilizing engine exhaust heat for hydrogen generation[J]. International Journal of Hydrogen Energy, 2021, 46(76): 38073-38088.
|