Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (4): 2183-2195.DOI: 10.16085/j.issn.1000-6613.2024-1605
• Materials science and technology • Previous Articles Next Articles
ZHAO Min1(
), XU Jing1, GUO Xingjian1, CHEN Sheng2, LI Pengjie1, HE Meng2
Received:2024-10-08
Revised:2025-01-05
Online:2025-05-07
Published:2025-04-25
Contact:
ZHAO Min
赵敏1(
), 徐静1, 郭兴建1, 陈昇2, 李鹏洁1, 何萌2
通讯作者:
赵敏
作者简介:赵敏(1975—),女,副教授,博士,硕士生导师,研究方向为材料腐蚀及防护。E-mail:zhaomin@cupk.edu.cn。
基金资助:CLC Number:
ZHAO Min, XU Jing, GUO Xingjian, CHEN Sheng, LI Pengjie, HE Meng. Research progress of nano-fillers in scale inhibition coatings[J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2183-2195.
赵敏, 徐静, 郭兴建, 陈昇, 李鹏洁, 何萌. 阻垢涂层中纳米填料的研究进展[J]. 化工进展, 2025, 44(4): 2183-2195.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1605
| 纳米填料 | 性质 | 涂层特点 | 参考文献 |
|---|---|---|---|
| 碳纳米管(CNTs) | 强度高、韧性好、稳定性好、疏水性 | 分散性差、疏水性好 | [ |
| 碳纳米纤维(CNFs) | 耐高温 | 机械强度好、相容性差、比表面积大、分散性差 | [ |
| 石墨烯及其衍生物 | 比表面积大、强度高 | 化学稳定性好、分散性差、界面相容性差等 | [ |
| 纳米填料 | 性质 | 涂层特点 | 参考文献 |
|---|---|---|---|
| 碳纳米管(CNTs) | 强度高、韧性好、稳定性好、疏水性 | 分散性差、疏水性好 | [ |
| 碳纳米纤维(CNFs) | 耐高温 | 机械强度好、相容性差、比表面积大、分散性差 | [ |
| 石墨烯及其衍生物 | 比表面积大、强度高 | 化学稳定性好、分散性差、界面相容性差等 | [ |
| 序号 | 纳米填料 | 制备方法 | 优点 | 缺点 | 复合涂层 | 涂层性能 | 其他功能 |
|---|---|---|---|---|---|---|---|
| 1 | 纳米SiO2[ | 共混法 | 操作简单、适合大规模生产、适用多种基体材料,可灵活调控填料的种类、含量 | 分散性差、易团聚、填料与基体间界面相互作用弱 | 超疏水聚偏氟乙烯/氟化乙丙烯/二氧化硅(PFS)复合涂层 | 结垢率仅为疏水PFS复合涂层的44% | — |
| 2 | PPS/PTFE超疏水涂层 | 在超疏水涂层上的沉积速率仅为环氧硅树脂涂层的38.6% | — | ||||
| 3 | EP/卵磷脂/SiO2/HEDP | 加入缓释填料后复合涂层的阻垢率高达80.7%,抗垢寿命是未添加磷脂包被填料涂层的2倍 | 耐腐蚀 | ||||
| 4 | CNTs[ | 超疏水PFS-CNTs复合涂层 | 超疏水PFS- CNTs复合涂层上的结垢率仅为疏水PFS复合涂层的44% | — | |||
| 5 | TiO2[ | 含掺杂经全氟癸基三甲氧基硅烷改性的TiO2粒子构建微纳米结构的超疏水涂层 | 涂层表面的结垢量分别减少了73.71%和55.38% | 自清洁性 | |||
| 6 | CeO2[ | Cu-Zn-CeO2协同防结垢涂层 | 管道钢表面有大量的菱面体CaCO3,超亲水性Cu-Zn- CeO2涂层上只出现了绒毛状文石 | 自清洁、防污 | |||
| 7 | 分层Ni-CeO2涂层 | Ni-CeO2涂层(静态、动态)的缓蚀率均大于95% | 耐酸碱性、自清洁性 | ||||
| 8 | CNTs[ | 乳液聚合法 | 良好的分散性、高聚合速率、调节聚合物特性 | 反应难控制、依赖水相、 | 超疏水FEVE/FEP/CNTs/MC复合涂层 | 复合涂层的沉积速率仅为0.175mg/cm2(纯Al为1.81mg/cm2) | 自修复、防污、 抗冲击等 |
| 9 | 石墨及其 衍生物[ | 溶胶-凝胶法 | 易形成均匀纳米填料、可控性强、表面功能化 | 反应时间长、不易批量生产、 | 超疏水PPS/FKM/EG@SiO2涂层 | 超疏水涂层CaCO3垢沉积量为0.153mg/cm2,PPS/FKM(0.738mg/cm2) | 自清洁、防污 |
| 10 | TiO2[ | 超疏水/超亲油聚脲基复合涂层(FPUA@SiO2/F-TWs) | 与FPUA@SiO2涂层相比,在水中结垢量增加4.2%(FPUA@SiO2涂层为3.4%),在油中结垢量为5.08% | 自清洁、防污、 防腐、 耐紫外线 | |||
| 11 | TiO2[ | 氟化改性 | 改善表面性能、提高界面相容性和稳定性 | 成本高、工艺复杂 | 超疏水超亲油FEVE/PVDF/W-TiO2/H-CNTs复合涂层 | 与FEVE/PVDF涂层相比(0.738mg/cm2),超疏水涂层表面CaCO3沉积量减少0.451mg/cm2 | 自清洁、防污、 耐久性 |
| 12 | CNTs[ | EP/iDCNTs/Zn/PVDF复合涂层 | 与EP涂层相比,复合涂层表面CaCO3沉积量仅为EP的18.4% | 耐腐蚀 | |||
| 13 | TiO2[ | 水热合成法 | 均匀性好、成本低、环保、可控制填料的形态和性能 | 设备要求高、反应时间长、可能出现副反应 | 超疏水PVDF/FEVE/GO@TiO2复合涂层 | 复合涂层的CaCO3沉积量0.26mg/cm2(Al基质为0.44mg/cm2) | 自清洁、防污、 耐紫外线 |
| 序号 | 纳米填料 | 制备方法 | 优点 | 缺点 | 复合涂层 | 涂层性能 | 其他功能 |
|---|---|---|---|---|---|---|---|
| 1 | 纳米SiO2[ | 共混法 | 操作简单、适合大规模生产、适用多种基体材料,可灵活调控填料的种类、含量 | 分散性差、易团聚、填料与基体间界面相互作用弱 | 超疏水聚偏氟乙烯/氟化乙丙烯/二氧化硅(PFS)复合涂层 | 结垢率仅为疏水PFS复合涂层的44% | — |
| 2 | PPS/PTFE超疏水涂层 | 在超疏水涂层上的沉积速率仅为环氧硅树脂涂层的38.6% | — | ||||
| 3 | EP/卵磷脂/SiO2/HEDP | 加入缓释填料后复合涂层的阻垢率高达80.7%,抗垢寿命是未添加磷脂包被填料涂层的2倍 | 耐腐蚀 | ||||
| 4 | CNTs[ | 超疏水PFS-CNTs复合涂层 | 超疏水PFS- CNTs复合涂层上的结垢率仅为疏水PFS复合涂层的44% | — | |||
| 5 | TiO2[ | 含掺杂经全氟癸基三甲氧基硅烷改性的TiO2粒子构建微纳米结构的超疏水涂层 | 涂层表面的结垢量分别减少了73.71%和55.38% | 自清洁性 | |||
| 6 | CeO2[ | Cu-Zn-CeO2协同防结垢涂层 | 管道钢表面有大量的菱面体CaCO3,超亲水性Cu-Zn- CeO2涂层上只出现了绒毛状文石 | 自清洁、防污 | |||
| 7 | 分层Ni-CeO2涂层 | Ni-CeO2涂层(静态、动态)的缓蚀率均大于95% | 耐酸碱性、自清洁性 | ||||
| 8 | CNTs[ | 乳液聚合法 | 良好的分散性、高聚合速率、调节聚合物特性 | 反应难控制、依赖水相、 | 超疏水FEVE/FEP/CNTs/MC复合涂层 | 复合涂层的沉积速率仅为0.175mg/cm2(纯Al为1.81mg/cm2) | 自修复、防污、 抗冲击等 |
| 9 | 石墨及其 衍生物[ | 溶胶-凝胶法 | 易形成均匀纳米填料、可控性强、表面功能化 | 反应时间长、不易批量生产、 | 超疏水PPS/FKM/EG@SiO2涂层 | 超疏水涂层CaCO3垢沉积量为0.153mg/cm2,PPS/FKM(0.738mg/cm2) | 自清洁、防污 |
| 10 | TiO2[ | 超疏水/超亲油聚脲基复合涂层(FPUA@SiO2/F-TWs) | 与FPUA@SiO2涂层相比,在水中结垢量增加4.2%(FPUA@SiO2涂层为3.4%),在油中结垢量为5.08% | 自清洁、防污、 防腐、 耐紫外线 | |||
| 11 | TiO2[ | 氟化改性 | 改善表面性能、提高界面相容性和稳定性 | 成本高、工艺复杂 | 超疏水超亲油FEVE/PVDF/W-TiO2/H-CNTs复合涂层 | 与FEVE/PVDF涂层相比(0.738mg/cm2),超疏水涂层表面CaCO3沉积量减少0.451mg/cm2 | 自清洁、防污、 耐久性 |
| 12 | CNTs[ | EP/iDCNTs/Zn/PVDF复合涂层 | 与EP涂层相比,复合涂层表面CaCO3沉积量仅为EP的18.4% | 耐腐蚀 | |||
| 13 | TiO2[ | 水热合成法 | 均匀性好、成本低、环保、可控制填料的形态和性能 | 设备要求高、反应时间长、可能出现副反应 | 超疏水PVDF/FEVE/GO@TiO2复合涂层 | 复合涂层的CaCO3沉积量0.26mg/cm2(Al基质为0.44mg/cm2) | 自清洁、防污、 耐紫外线 |
| 27 | HE Hui, ZHANG Zhong Ming, JIANG Yong Gang, et al. Research progress on preparation methods of rare earth oxide hydrophobic coatings[J]. Materials Reports, 2021, 35(S2): 50-55. |
| 28 | ZHU Mingliang, YUAN Ruixia, WANG Chijia, et al. Fabrication and performance study of a superhydrophobic anti-scaling and anti-corrosion coating[J]. Applied Surface Science, 2023, 615: 156287. |
| 29 | ZHU Yanji, LI Hongwei, ZHU Mingliang, et al. Dynamic and active antiscaling via scale inhibitor pre-stored superhydrophobic coating[J]. Chemical Engineering Journal, 2021, 403:126467. |
| 30 | LI Hao, YU Sirong, HU Jinhui, et al. Modifier-free fabrication of durable superhydrophobic electrodeposited Cu-Zn coating on steel substrate with self-cleaning, anti-corrosion and anti-scaling properties[J]. Applied Surface Science, 2019, 481: 872-882. |
| 31 | 王汀, 高坤, 钟赛男, 等. 聚氨酯涂层的疏水改性研究进展 [J]. 中国腐蚀与防护学报, 2024, 44(4): 823-834. |
| WANG Ting, GAO Kun, ZHONG Sainan, et al. Research progress on hydrophobic modification of polyurethane coatings[J]. Journal of Chinese Society for Corrosion and Protection, 2024, 44(4): 823-834. | |
| 32 | LI Ruiqian, LI Mengqing, WU Xin, et al. A pine needle-like superhydrophobic Zn/ZnO coating with excellent mechanochemical robustness and corrosion resistance[J]. Materials and Design, 2023, 225: 111583. |
| 33 | HU Chao, CHEN Wenhui, LI Tan, et al. Constructing non-fluorinated porous superhydrophobic SiO2-based films with robust mechanical properties[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 551: 65-73. |
| 34 | LI Xuewu, DU Shaomeng, MA Chenghu, et al. Nano-SiO2 based anti-corrosion superhydrophobic coating on Al alloy with mechanical stability, anti-pollution and self-cleaning properties[J]. Ceramics International, 2024, 50(6): 9469-9478. |
| 35 | 于芳, 王翔, 张昭. 纳米填料在环氧防腐涂层中的应用研究进展 [J]. 中国腐蚀与防护学报, 2023, 43(2): 220-230. |
| YU Fang, WANG Xiang, ZHANG Zhao. Research progress of nanofillers for epoxy anti-corrosion coatings[J]. Journal of Chinese Society for Corrosion and Protection, 2023, 43(2): 220-230. | |
| 36 | BAI Zhukang, WU Yadong, LI Jun, et al. Preparation of “core-shell” structured SiO2@TiO2 nanospheres by in-situ polymerization and grafting modification method for enhancing fluororubber’s mechanical performance[J]. Composites A: Applied Science and Manufacturing, 2024, 180: 108060. |
| 37 | BRETLER Sharon, KANOVSKY Naftali, Taly ILINE-VUL, et al. In-situ thin coating of silica micro/nano-particles on polymeric films and their anti-fogging application[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 607: 125444. |
| 38 | LIU Zhanjian, ZHANG Congyuan, JING Jing, et al. Bristle worm inspired ultra-durable superhydrophobic coating with repairable microstructures and anti-corrosion/scaling properties[J]. Chemical Engineering Journal, 2022, 436: 135273. |
| 39 | LING Fiona W M, ABDULBARI Hayder A, CHIN Sim-Yee. Synthesis and characteristics of silica nano-particles using modified sol-gel method in microreactor[J]. Materials Today: Proceedings, 2021, 42: 1-7. |
| 40 | SUWAN Anutida, SRICHAI Kanitsorn, SUKHAWIPAT Nathapong, et al. New waterborne polyurethane/silica hybrid dispersions based on natural rubber and prepared by sol-gel process: Effects of amino alkoxy-silane and nano-silica contents on dispersion stability and films properties[J]. Progress in Organic Coatings, 2023, 184: 107835. |
| 41 | HUANG Yi, ZHAO Chenyang, LI Yue, et al. Development of self-healing sol-gel anticorrosion coating with pH-responsive 1H-benzotriazole-inbuilt zeolitic imidazolate framework decorated with silica shell[J]. Surface and Coatings Technology, 2023, 466: 129622. |
| 42 | MAO Tianci, LI Changquan, MAO Feifei, et al. A durable anti-corrosion superhydrophobic coating based on carbon nanotubes and SiO2 aerogel for superior protection for Q235 steel[J]. Diamond and Related Materials, 2022, 129:109370. |
| 43 | 刘恒阳, 张蕾, 史洪微, 等. 铝合金表面氟硅烷改性纳米二氧化硅超疏水耐蚀涂层的制备和表征 [J]. 表面技术, 2025, 54(2): 202-212. |
| LIU Hengyang, ZHANG Lei, SHI Hongwei, et al. Preparation and characterization of fluorosilane-modified nano-silica superhydrophobic and anti-corrosion coatings on aluminium alloy[J].Surface Technology, 2025, 54(2): 202-212. | |
| 44 | 冯业娜, 刘书河, 张书博, 等. 基于聚合诱导自组装制备二氧化硅/聚合物纳米复合材料 [J]. 化学进展, 2021, 33(11): 1953-1963. |
| FENG Yena, LIU Shuhe, ZHANG Shubo, et al. Preparation of silica/polymer nanocomposites based on polymerization-induced self-assembly[J]. Progress in Chemistry, 2021, 33(11): 1953-1963. | |
| 45 | LI Zhan, ZHANG Pengfei, CHIAO Yu-Hsuan, et al. Improvement of anti-wetting and anti-scaling properties in membrane distillation process by a facile fluorine coating method[J]. Desalination, 2023, 566: 116936. |
| 46 | LIU Xuan, HAN Xiaofeng, WANG Mingxi, et al. Improvement of the anti-corrosion coating properties of waterborne epoxy resin with the incorporation of fluoropolymer-modified silica nanofillers[J]. Progress in Organic Coatings, 2024, 191: 108407. |
| 47 | WANG Chijia, LIU Shupei, LI Meiling, et al. Novel environmentally friendly waterborne epoxy coating with long-term antiscaling and anticorrosion properties[J]. Langmuir : The ACS journal of surfaces and colloids, 2021, 37(31): 9439-9450. |
| 48 | WEI Zheng, WU Yuping, WEI Ziyu, et al. The effect of bonding method between WC-Cr3C2-Ni and multiwall carbon nanotubes powders on the properties of composite coatings[J]. Ceramics International, 2022, 48(20): 30996-1007. |
| 1 | WANG Jing, QI Xiangsheng, LIU Huiqing, et al. Mechanisms of remaining oil formation by water flooding and enhanced oil recovery by reversing water injection in fractured-vuggy reservoirs[J]. Petroleum Exploration and Development, 2022, 49(5): 1110-1125. |
| 2 | 吕晓光, 李伟. 水驱油藏特高含水阶段提高采收率可行性研究及技术对策 [J]. 油气地质与采收率, 2022, 29(6): 130-137. |
| Xiaoguang LYU, LI Wei. Feasibility and technologies for improving recovery at extra-high water cut development stage in waterflooding reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(6): 130-137. | |
| 3 | LI Lian, KANG Yong, LIU Feng, et al. Experimental study on the mass transfer and microscopic distribution characteristics of remaining oil and CO2 during water-miscible CO2 flooding[J]. Journal of CO2 Utilization, 2024, 87: 102920. |
| 4 | 张传宝, 李宗阳, 张东, 等. CO2驱油藏工程研究进展及展望 [J]. 油气地质与采收率, 2024, 31(5): 142-152. |
| ZHANG Chuanbao, LI Zongyang, ZHANG Dong, et al. Research progress and prospects of reservoir engineering by CO2 flooding[J]. Petroleum Geology and Recovery Efficiency, 2024, 31(5): 142-152. | |
| 5 | QIAN Huijuan, ZHU Yanji, WANG Huaiyuan, et al. Preparation and antiscaling performance of superhydrophobic poly(phenylene sulfide)/polytetrafluoroethylene composite coating[J]. Industrial and Engineering Chemistry Research, 2017, 56(44): 12663-12671. |
| 6 | QIAN Huijuan, ZHU Mingliang, SONG Hua, et al. Anti-scaling of superhydrophobic poly(vinylidene fluoride) composite coating: Tackling effect of carbon nanotubes[J]. Progress in Organic Coatings, 2020, 142: 105566. |
| 7 | RAO Unnati, IDDYA Arpita, JUNG Bongyeon, et al. Mineral scale prevention on electrically conducting membrane distillation membranes using induced electrophoretic mixing[J]. Environmental science and technology, 2020, 54(6): 3678-3690. |
| 8 | XU Jing, ZHAO Judong, JIA Yun. Experimental study on the scale inhibition effect of the alternating electromagnetic field on CaCO3 fouling on the heat exchanger surface in different circulating cooling water conditions[J]. International Journal of Thermal Sciences, 2023, 192: 108388. |
| 9 | 吴志根, 颜子涵, 邱兰, 等. 高盐工业废水浓缩工艺中的换热器结垢机理和阻垢技术 [J]. 同济大学学报(自然科学版), 2023, 51(6): 932-942. |
| WU Zhigen, YAN Zihan, QIU Lan, et al. Review of heat exchanger fouling mechanism technology in high-salt industrial wastewater concentration process[J]. Journal of Tongji University (Natural Science), 2023, 51(6): 932-942. | |
| 49 | LIU Zhanjian, REN Lina, ZHANG Baoshuang, et al. Eco-friendly waterborne superhydrophobic/superoleophilic FEVE composite coating with prolonged mechanochemical and anti-scaling properties[J]. Chemical Engineering Journal, 2023, 451: 138693. |
| 50 | XU Di, MA Lingwei, ZHANG Fan, et al. Preparation of CNTs-SiO2 hybrids/epoxy superhydrophobic coating with self-healing property activated by shape memory effect[J]. Composites Communications, 2024, 46: 101839. |
| 51 | WU Youqing, HE Yi, CHEN Chunlin, et al. MoS2-CNFs composites to enhance the anticorrosive and mechanical performance of epoxy coating[J]. Progress in Organic Coatings, 2019, 129: 178-186. |
| 52 | SHU Bo, LIU Zhilang, LIU Zhaoqing, et al. Preparation of SiO2-decorated GO sheets and their influences on the properties of castor oil-based polyurethane coating film[J]. Progress in Organic Coatings, 2023, 175: 107382. |
| 53 | LI Xin, SHI Hebo, HONG Ruixue, et al. Phytic acid-doped polypyrrole/graphene oxide nanofillers for the preparation of self-healing anticorrosion coatings with the synergistic physical barrier, passivation and chelating effect[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 701: 134908. |
| 54 | ZHU Jinyu, YANG Yawen, MA Limin, et al. Al3+ diffusion-directed assembly of GO-CNTs multi-layered composite coatings: Preparation and tribological performance[J]. Surface and Coatings Technology, 2024, 484: 130870. |
| 55 | CHEN Xixi, WANG Huaiyuan, WANG Chijia, et al. A novel antiscaling and anti-corrosive polymer-based functional coating[J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 97: 397-405. |
| 56 | DING Xu, WANG Qingwu, XU Xin, et al. A novel epoxy resin composite coating containing polyaniline modified GO with triple anti-corrosion effects of barrier, passivation and corrosion inhibition[J]. Progress in Organic Coatings, 2024, 194: 108564. |
| 57 | EDRISI Amir, ABBASI KHAZAEI Bijan, BABAAHMADI Vahid, et al. RTV/GO-SiO2 anti-corrosion nanocomposite coating[J]. Surface and Coatings Technology, 2024, 488: 131029. |
| 58 | LI Hao, PENG Yujie, XIN Lei, et al. Bionic eco-friendly synergic anti-scaling Cu-Zn-CeO2 coating on steel substrate functionalized by multi-scale structures and heating enhanced adsorption[J]. Materials and Design, 2023, 232: 112109. |
| 59 | FENG Ziwei, ZHANG Xueyan, LI Haoyue, et al. Enhancing the properties of metal-composite interface by a nano-TiO2 coating[J]. Ceramics International, 2024, 50(1): 1764-1776. |
| 60 | MIRZAPOOR Aboulfazl, GHASHGHAEE Erfan. Nano engineered synthesis layer by layer and transparent synergistic antimicrobial coating based on Se/Ag/TiO2/ZnO hybrid nanostructures[J]. Inorganic Chemistry Communications, 2023, 153: 110840. |
| 10 | 罗庆梅, 王军星, 鄢长颉, 等. 变频电磁防垢技术研究与应用 [J]. 钻采工艺, 2020, 43(3): 79-81. |
| LUO Qingmei, WANG Junxing, YAN Changxie, et al. Research and application of frequency conversion electromagnetic anti-scaling technology[J]. Drilling and Production Technology, 2020, 43(3): 79-81. | |
| 11 | 刘战剑, 付雨欣, 任丽娜, 等. 超疏水涂层在防腐阻垢领域研究进展 [J]. 化工进展, 2023, 42(6): 2999-3011. |
| LIU Zhanjian, FU Yuxin, REN Lina, et al. New research progress of superhydrophobic coatings in the field of anti-corrosion and anti-scaling[J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2999-3011. | |
| 12 | ZANG Ruhua, WANG Yixuan, MENG Jingxin, et al. Sustainable scale resistance on a bioinspired synergistic microspine coating with a collectible liquid barrier[J]. Materials horizons, 2022, 9(11): 2872-2880. |
| 13 | CHEN Yuxin, YU Xiaodong, CHEN Liwei, et al. Dynamic poly(dimethylsiloxane) brush coating shows even better antiscaling capability than the low-surface-energy fluorocarbon counterpart[J]. Environmental science and technology, 2021, 55(13): 8839-8847. |
| 14 | ZHANG Binbin, YAN Jiayang, XU Weichen, et al. Robust, scalable and fluorine-free superhydrophobic anti-corrosion coating with shielding functions in marine submerged and atmospheric zones[J]. Materials and Design, 2022, 223: 111246. |
| 15 | LIU Zhanjian, ZHU Linfeng, QU Shengdi, et al. Design of superwetting composite coating with excellent anti-scaling property based on EDTA-Zn microcapsules[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 695: 134309. |
| 16 | WANG Mingye, MA Lichun, SHI Longlong, et al. Chemical grafting of nano-SiO2 onto graphene oxide via thiol-ene click chemistry and its effect on the interfacial and mechanical properties of GO/epoxy composites[J]. Composites Science and Technology, 2019, 182: 107751. |
| 17 | WANG Chijia, WANG Huaiyuan, HU Yue, et al. Anti-corrosive and scale inhibiting polymer-based functional coating with internal and external regulation of TiO2 whiskers[J]. Coatings, 2018, 8(1): 29. |
| 18 | 吕燕. 不同金属基底上油田地热水防腐防垢涂层制备及池沸腾特性[D].天津: 天津大学 2020. |
| Yan LYU. Preparations and Properties in pool boiling of anticorrosion and antifouling coatings on different metal substrates for oilfield geothermal water[D]. Tianjin: Tianjin University, 2022. | |
| 61 | WU Xian, LI Pengfei, ZHAO Zhimeng, et al. A universal strategy to prepare hot liquid super-repellent surfaces for anti-scalding and anti-scaling[J]. Chemical Engineering Journal, 2022, 441:136044. |
| 62 | 左凯, 鞠少栋, 张斌, 等. Sb-SnO2掺杂量对Al2O3-13%TiO2复合陶瓷涂层抗结垢性能的影响 [J]. 机械工程材料, 2023, 47(9): 101-105. |
| ZUO Kai, JU Shaodong, ZHANG Bin, et al. Effect of Sb-SnO2 doping amount on anti-scaling performance of Al2O3-13%TiO2 composite ceramic coating[J]. Materials for Mechanical Engineering, 2023, 47(9): 101-105. | |
| 63 | LIU Zhanjian, FU Yuxin, ZHANG Xiguang, et al. Construction of durable superhydrophobic/superoleophilic polyurea-based composite coating with excellent anti-corrosion/scaling properties[J]. Progress in Organic Coatings, 2024, 192: 108520. |
| 64 | WANG Yixuan, LI Jiexin, SHANG Zhihao, et al. Wettability-driven synergistic resistance of scale and oil on robust superamphiphobic coating[J]. Chinese Chemical Letters, 2024, 35(7): 459-464. |
| 65 | TIAN Xinjiao, WANG Wenying, HUANG Yixiang, et al. Fabrication of CNTs/MMT/PPS composite hydrophobic coatings on metal with enhanced anticorrosive and self-cleaning performance[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 698: 134493. |
| 66 | WU Binrui, Jiajie LYU, PENG Chaoyi, et al. Compression molding processed superhydrophobic CB/CeO2/PVDF/CF nanocomposites with highly robustness, reusability and multifunction[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 590: 124533. |
| 67 | WU Yangmin, JIANG Fengwei, QIANG Yujie, et al. Synthesizing a novel fluorinated reduced graphene oxide-CeO2 hybrid nanofiller to achieve highly corrosion protection for waterborne epoxy coatings[J]. Carbon, 2021, 176: 39-51. |
| 68 | LI Pengchang, ZHANG Kai, WANG Chuanjun, et al. Rapid transition from superhydrophilic to superhydrophobic of hierarchical Ni-CeO2 coating via vacuum heating on steel substrate for anti-scaling property[J]. Vacuum, 2023, 215:112278. |
| 69 | WANG Shuai, FAN Yue, WANG Yingke, et al. Light-responsive metal-organic framework (MOF)-based liquid-like coating for sustainable scale resistance[J]. Advanced Functional Materials, 2024, 34(9): 2311036. |
| 70 | DAI Yunyi, ZHANG Guangxun, PENG Yi, et al. Recent progress in 1D MOFs and their applications in energy and environmental fields[J]. Advances in Colloid and Interface Science, 2023, 321: 103022. |
| 71 | ZHANG Tianzhan, WANG Yuefeng, ZHANG Feilong, et al. Bio-inspired superhydrophilic coatings with high anti-adhesion against mineral scales[J]. NPG Asia Materials, 2018, 10(3): e471. |
| 19 | LIU Zhanjian, ZHANG Congyuan, ZHANG Xiguang, et al. Durable superhydrophobic PVDF/FEVE/GO@TiO2 composite coating with excellent anti-scaling and UV resistance properties[J]. Chemical Engineering Journal, 2021, 411: 128632. |
| 20 | CHENG Wei, WANG Peizhi, ZHANG Xiaolei, et al. Constructing anti-scaling and anti-wetting polyvinyl alcohol layers through spray-coating with improved water permeability in membrane distillation[J]. Desalination, 2023, 545: 116161. |
| 21 | 朱明亮. 超疏水复合涂层的设计制备及防垢防腐性能研究[D]. 大庆: 东北石油大学 2023. |
| ZHU Mingliang. Study on design and preparation of superhydrophobic composite coatings and their anti-scaling and anti-corrosion performance [D]. Daqing: Northeast Petroleum University, 2023. | |
| 22 | LI Hao, PENG Yujie, ZHANG Kai, et al. Spontaneous self-healing bio-inspired lubricant-infused coating on pipeline steel substrate with reinforcing anti-corrosion, anti-fouling, and anti-scaling properties[J]. Journal of Bionic Engineering, 2022, 19(6): 1601-1614. |
| 23 | ASHFAQ Mohammad Y, AL-GHOUTI Mohammad A, DA’NA Dana A, et al. Investigating the effect of temperature on calcium sulfate scaling of reverse osmosis membranes using FTIR, SEM-EDX and multivariate analysis[J]. Science of the Total Environment, 2020, 703(C): 134726. |
| 24 | BRAZ Álvaro G, PULCINELLI Sandra H, SANTILLI Celso V. Glycerol-based polyurethane-silica organic-inorganic hybrid as an anticorrosive coating[J]. Progress in Organic Coatings, 2022, 169: 106939. |
| 25 | 朱田震. 钢/水界面电化学腐蚀诱导CaCO3结垢行为研究[D]. 大连: 大连理工大学 2020. |
| ZHU Tianzhen. Investigation on the electrochemical corrosion-induced CaCO3 scaling at steel/water interface[D]. Dalian: Dalian University of Technology,2020. | |
| 26 | ZHANG Congyuan, LIU Zhanjian, ZHANG Xiguang, et al. Fabrication of robust superhydrophobic microcapsule-based composite coating with self-healing and anti-scaling properties[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 671: 131655. |
| 27 | 何辉, 张忠明, 姜勇刚, 等. 稀土氧化物疏水涂层制备方法的研究进展 [J]. 材料导报, 2021, 35(S2): 50-55. |
| 72 | YIN Xiaoli, YU Sirong, BI Xiaojian, et al. Robust superhydrophobic 1D Ni3S2 nanorods coating for self-cleaning and anti-scaling[J]. Ceramics International, 2019, 45(18): 24618-24624. |
| 73 | LIANG Bin, SUN Yue, BAI Ziheng, et al. A novel UV-curable amphiphobic coating with dynamic air-layer copolymer brush offering stable dual-functional anti-scaling and anti-corrosion properties[J]. Progress in Organic Coatings, 2024, 194: 108607. |
| 74 | 李勇, 刘喻波, 裴海林, 等. 聚氨酯超疏水涂层防垢性能及现场应用研究 [J]. 化工新型材料, 2023, 51(S2): 642-647. |
| LI Yong, LIU Xiaobo, PEI Hailin, et al. Study on the anti-scaling performance and application of polyurethane superhydrophobic coating[J]. New Chemical Materials, 2023, 51(S2): 642-647. |
| [1] | SONG Ci, LI Haiyan, ZHANG Shizhen, LIU Hongwei, ZHANG Jianying, QIU Jiahao, CAO Renwei, SUN Kun, QIN Ying, ZHU Mingxu, GAO Mengyan. Types and application status of the self-repairing anti-corrosion coatings [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1466-1484. |
| [2] | JIN Yuyang, NIU Chuanfeng, LIU Yingshuo, DING Shi. Graphite powder/Nafion-Pb electrode for electrocatalytic reduction of oxalic acid to glycolic acid [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 1003-1013. |
| [3] | DING Wei, DU Wei, GUO Tiebin, GUAN Xiaozhuo, WANG Tiezheng, GAO Jiantong, ZHANG Nan, LI Da, ZHANG Lanhe. Preparation and anti-corrosion research of graphene oxide modified by L-glutamic acid composite epoxy resin coating [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 424-435. |
| [4] | ZENG Xiangfei, HAN Yunhui, LIN Fan, HUANG Rong, YU Xi, HUANG Yao, WANG Rong, SHU Jiancheng, CHEN Mengjun. Gel breaking-capacity reduction and reutilization of waste lithium anode coating slurry [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4664-4673. |
| [5] | REN Guoyu, TUO Yun, ZHENG Wenjie, QIAO Zeting, REN Zhuangzhuang, ZHAO Yali, SHANG Junfei, CHEN Xiaodong, GAO Xianghu. Research progress and application of superhydrophobic nano-coating technology [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4450-4463. |
| [6] | SONG Weitao, SONG Huiping, FAN Zhenlian, FAN Biao, XUE Fangbin. Research progress of fly ash in anti-corrosion coatings [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4894-4904. |
| [7] | WANG Xin, WANG Bingbing, YANG Wei, XU Zhiming. Anti-scale and anti-corrosion properties of PDA/PTFE superhydrophobic coating on metal surface [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4315-4321. |
| [8] | LIU Zhanjian, FU Yuxin, REN Lina, ZHANG Xiguang, YUAN Zhongtao, YANG Nan, WANG Huaiyuan. New research progress of superhydrophobic coatings in the field of anti-corrosion and anti-scaling [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2999-3011. |
| [9] | HE Yang, LI Siying, LI Chuanqiang, YUAN Xiaoya, ZHENG Xuxu. Anticorrosion performance of thermal reduction graphene oxide /epoxy resin composite coating [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1983-1994. |
| [10] | HU Jinjian, LI Long, DONG Zijing. Application of carbon nanomaterials in PU yarn-based flexible strain sensors [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 872-883. |
| [11] | GU Haiyang, WANG Dong, ZONG Yongzhong, FU Shaohai. Preparation and property of tanning sludge based biomass flame retardant coating protein for cotton fabric [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 641-649. |
| [12] | XIN Hua, PENG Qi, LI Yangfan, ZHANG Yan, CHEN Yue, LI Xinqi. Preparation and self-repairing performance of microcapsules with fluoropolyurethane dimethacrylate as the core [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5406-5413. |
| [13] | GUAN Yongxin, ZHOU Qiang, CHEN Liyi, LI Hui, LIU Xiaonan. Research progress of organic silicon and organic fluorine low surface energy antifouling coatings [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5286-5298. |
| [14] | ZHANG Xiao, WANG Zhanyi, WU Zhiying, LIU Yuting, LIU Zilong, LIU Xinjia, ZHANG Sui’an. Coating modification technology of fracturing proppant [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 386-400. |
| [15] | LIU Yang, ZHAO Heng, LI Qian, XIN Hu, LI Xingtao. Research progress of perfluoropolyether polymers and functional composites [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 321-335. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |