Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (4): 2156-2171.DOI: 10.16085/j.issn.1000-6613.2024-0624

• Materials science and technology • Previous Articles     Next Articles

Techniques and applications of atomic force microscope infrared spectroscopy and chemical imaging

HE Jing(), ZHENG Na, XU Li, SHEN Sudan, PU Qun, FANG Eryuan, JIE Suyun()   

  1. State Key Laboratory of Chemical Engineering, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
  • Received:2024-04-12 Revised:2024-10-25 Online:2025-05-07 Published:2025-04-25
  • Contact: JIE Suyun

原子力显微镜红外光谱和化学成像的技术与应用

贺静(), 郑娜, 徐丽, 沈素丹, 浦群, 房尔园, 介素云()   

  1. 浙江大学化学工程与生物工程学院,浙江大学化学工程联合国家重点实验室,浙江 杭州 310058
  • 通讯作者: 介素云
  • 作者简介:贺静(1983—),女,硕士,高级工程师,研究方向为仪器测试分析及实验技术。E-mail:0917344@zju.edu.cn
  • 基金资助:
    浙江大学实验技术重点研究项目(SZD202303)

Abstract:

In this review, the core mechanism, technical progress and wide application in many disciplines of atomic force microscope infrared spectroscopy (AFM-IR) were discussed. AFM-IR technology combined the nanoscale spatial resolution of atomic force microscope (AFM) with the chemical analysis capability of infrared spectroscopy (IR). Based on the principle of photothermal induced resonance (PTIR), AFM-IR technology not only continued the advantages of AFM in the characterization of micro-morphology, but also overcame the limitation of traditional infrared spectroscopy in spatial resolution. And AFM-IR technology complemented the blank of AFM in chemical component analysis. The principle of AFM-IR and three imaging techniques (contact, tapping and peakforce tapping) were described, and its application in polymer composites, biological tissues, environmental contaminant detection, and the characterization of piezoelectric ferroelectric materials and battery materials were discussed. At the same time, the challenges of AFM-IR technology in improving signal to noise ratio (SNR) and its application in soft matter research were also presented. Finally, the direction of future research was proposed in order to promote the further development of AFM-IR technology, and then play a more critical role in the design and performance optimization of materials.

Key words: atomic force microscope infrared spectroscopy (AFM-IR), nanostructure, polymer, battery material, bioengineering, environmental science

摘要:

探讨了原子力显微镜红外光谱技术(AFM-IR)的核心机制、技术进展及其在多个学科中的广泛应用。AFM-IR技术融合了原子力显微镜(AFM)的纳米级空间分辨率与红外光谱(IR)的化学分析能力,基于光热诱导共振(photothermal induced resonance,PTIR)原理,其不仅延续了AFM在微观形貌表征上的优势,还克服了传统红外光谱在空间分辨率上的局限,并且补充了AFM在化学组分分析上的空白。文中阐述了AFM-IR的工作原理和三种成像技术(接触、轻敲和峰值力轻敲),随后着重讨论了其在聚合物复合材料、生物组织、环境污染物检测以及压电铁电材料和电池材料表征等领域的应用实例。同时,也提出了AFM-IR技术在提高信噪比和软物质研究中应用的挑战。最后,提出了未来研究方向,以期推动AFM-IR技术的进一步发展,进而促进其在材料的设计与性能优化中发挥更加关键的作用。

关键词: 原子力显微镜红外光谱, 纳米结构, 聚合物, 电池材料, 生物工程, 环境科学

CLC Number: 

京ICP备12046843号-2;京公网安备 11010102001994号
Copyright © Chemical Industry and Engineering Progress, All Rights Reserved.
E-mail: hgjz@cip.com.cn
Powered by Beijing Magtech Co. Ltd