Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (10): 5723-5733.DOI: 10.16085/j.issn.1000-6613.2023-1509
• Resources and environmental engineering • Previous Articles
ZHENG Ying1(), LI Xun1(), LI Zebing1, GAO Zhe1, ZHAO Chun2
Received:
2023-08-30
Revised:
2023-10-11
Online:
2024-10-29
Published:
2024-10-15
Contact:
LI Xun
通讯作者:
李寻
作者简介:
郑莹(1993—),女,博士,讲师,研究方向为高级氧化技术、水污染控制技术。E-mail:yingzheng@ecut.edu.cn。
基金资助:
CLC Number:
ZHENG Ying, LI Xun, LI Zebing, GAO Zhe, ZHAO Chun. Research progress in enhancing the efficiency of piezoelectric catalytic degradation of organic pollutants from water[J]. Chemical Industry and Engineering Progress, 2024, 43(10): 5723-5733.
郑莹, 李寻, 李泽兵, 高哲, 赵纯. 压电催化降解水中有机污染物的增效研究进展[J]. 化工进展, 2024, 43(10): 5723-5733.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1509
压电材料 | 压电材料投加量/g·L-1 | 驱动方式 | 污染物 | 污染物浓度/mg·L-1 | 降解速率/min-1 | 参考文献 |
---|---|---|---|---|---|---|
BTO微枝晶 | 10.0 | 超声,40kHz | AO7染料 | 20 | 0.031 | |
PZT纤维 | 12.5 | 超声,40kHz,80W | AO7染料 | 12 | 0.031 | |
MoS2纳米花 | 文献未提及 | 超声,40kHz,250W | RhB染料 | 10 | 1.10 | |
BaTiO3纳米颗粒 | 2.0 | 超声,40kHz,110W | 4-氯酚 | 25 | 0.011 | |
BiFeO3微片 | 1 .0 | 超声,40kHz | RhB染料 | 10 | 0.034 | |
Bi4Ti3O12微片 | 1.3 | 超声,40kHz,300W | MO染料 | 3 | 0.0042 | |
BTO纳米纤维 | 0.1 | 超声,40kHz,80W | RhB染料 | 5 | 0.060 | |
ZnO纳米棒 | 0.5 | 低频超声 | AO7染料 | 2 | 0.030 | |
(Ba,Sr)TiO3纳米线 | 1.0 | 超声,40kHz,80W | MO染料 | 5 | 0.020 | |
(Ba,Sr)TiO3纳米颗粒 | 1.0 | 超声,40kHz,0W | MO染料 | 5 | 0.0069 | |
BTO纳米线 | 1.0 | 超声,40kHz,80W | MO染料 | 5 | 0.013 | |
BTO纳米线 | 1.0 | 超声,40kHz,80W | MO染料 | 5 | 0.015 | |
BTO纳米颗粒 | 1.0 | 超声,40kHz,80W | MO染料 | 5 | 0.0084 | |
商用BTO纳米颗粒 | 1.0 | 超声,40kHz,80W | MO染料 | 5 | 0.0036 | |
BTO-800 | 1.0 | 超声,40kHz,80W | MO染料 | 5 | 0.019 | |
NaNbO3纳米线 | 22.5 | 超声,40kHz | RhB染料 | 5 | 0.014 | |
BTO纳米线 | 1.0 | 超声,40kHz,120W | MO染料 | 5 | 38.20min-1·mol-1 | |
K0.5Na0.5NbO3-900 | 4.0 | 超声,40kHz,180W | RhB染料 | 5 | 0.020 | |
BTO纳米颗粒 | 1.0 | 超声,40kHz,100W | RhB染料 | 5 | 0.0025 | |
BTO纳米线 | 1.0 | 超声,40kH,100W | RhB染料 | 5 | 0.034 | |
BTO纳米片 | 1.0 | 超声,40kHz,100W | RhB染料 | 5 | 0.13 | |
m-Bi2O4 | 1.2.0 | 超声,40kHz,300W | 磺胺甲嘧啶 | 10 | 0.033 | |
BTO纳米带 | 1.0 | 超声,50kHz,100W | RhB染料 | 10 | 0.015 | |
0.7BiFeO3-0.3BaTiO3 | 3.0 | 水力,0.2m/s | RhB染料 | 10 | 0.0018 | |
球形PZT | 5.0 | 水力,300r/min | RhB染料 | 10 | 0.010 | |
BTO纳米线 | 1.0 | 水力,1000r/min | MO染料 | 5 | 0.58min-1·mol-1 |
压电材料 | 压电材料投加量/g·L-1 | 驱动方式 | 污染物 | 污染物浓度/mg·L-1 | 降解速率/min-1 | 参考文献 |
---|---|---|---|---|---|---|
BTO微枝晶 | 10.0 | 超声,40kHz | AO7染料 | 20 | 0.031 | |
PZT纤维 | 12.5 | 超声,40kHz,80W | AO7染料 | 12 | 0.031 | |
MoS2纳米花 | 文献未提及 | 超声,40kHz,250W | RhB染料 | 10 | 1.10 | |
BaTiO3纳米颗粒 | 2.0 | 超声,40kHz,110W | 4-氯酚 | 25 | 0.011 | |
BiFeO3微片 | 1 .0 | 超声,40kHz | RhB染料 | 10 | 0.034 | |
Bi4Ti3O12微片 | 1.3 | 超声,40kHz,300W | MO染料 | 3 | 0.0042 | |
BTO纳米纤维 | 0.1 | 超声,40kHz,80W | RhB染料 | 5 | 0.060 | |
ZnO纳米棒 | 0.5 | 低频超声 | AO7染料 | 2 | 0.030 | |
(Ba,Sr)TiO3纳米线 | 1.0 | 超声,40kHz,80W | MO染料 | 5 | 0.020 | |
(Ba,Sr)TiO3纳米颗粒 | 1.0 | 超声,40kHz,0W | MO染料 | 5 | 0.0069 | |
BTO纳米线 | 1.0 | 超声,40kHz,80W | MO染料 | 5 | 0.013 | |
BTO纳米线 | 1.0 | 超声,40kHz,80W | MO染料 | 5 | 0.015 | |
BTO纳米颗粒 | 1.0 | 超声,40kHz,80W | MO染料 | 5 | 0.0084 | |
商用BTO纳米颗粒 | 1.0 | 超声,40kHz,80W | MO染料 | 5 | 0.0036 | |
BTO-800 | 1.0 | 超声,40kHz,80W | MO染料 | 5 | 0.019 | |
NaNbO3纳米线 | 22.5 | 超声,40kHz | RhB染料 | 5 | 0.014 | |
BTO纳米线 | 1.0 | 超声,40kHz,120W | MO染料 | 5 | 38.20min-1·mol-1 | |
K0.5Na0.5NbO3-900 | 4.0 | 超声,40kHz,180W | RhB染料 | 5 | 0.020 | |
BTO纳米颗粒 | 1.0 | 超声,40kHz,100W | RhB染料 | 5 | 0.0025 | |
BTO纳米线 | 1.0 | 超声,40kH,100W | RhB染料 | 5 | 0.034 | |
BTO纳米片 | 1.0 | 超声,40kHz,100W | RhB染料 | 5 | 0.13 | |
m-Bi2O4 | 1.2.0 | 超声,40kHz,300W | 磺胺甲嘧啶 | 10 | 0.033 | |
BTO纳米带 | 1.0 | 超声,50kHz,100W | RhB染料 | 10 | 0.015 | |
0.7BiFeO3-0.3BaTiO3 | 3.0 | 水力,0.2m/s | RhB染料 | 10 | 0.0018 | |
球形PZT | 5.0 | 水力,300r/min | RhB染料 | 10 | 0.010 | |
BTO纳米线 | 1.0 | 水力,1000r/min | MO染料 | 5 | 0.58min-1·mol-1 |
体系 | 化学物质 | 化学物质投加量 /mg·L-1 | 压电材料 | 压电材料投加量 /g·L-1 | 驱动方式 | 污染物 | 污染物浓度 /mg·L-1 | 降解速率 /min-1 | 参考文献 |
---|---|---|---|---|---|---|---|---|---|
压电-Fenton | Fe2+ | 4 | BTO微枝晶 | 9.0 | 超声,40kHz,300W | AO7 | 20 | 0.042 | |
Fe2+ | 10 | BTO纳米颗粒 | 2.0 | 超声,45kHz,300W | 卡马西平 | 5 | 0.026 | ||
压电-过硫酸盐 | PMS | 1000 | MoS2纳米花 | 0.3 | 超声,40kHz,300W | 苯酚 | 10 | 0.020 | |
PMS | 1000 | MoS2纳米花 | 0.3 | 水力,900r/min | 苯酚 | 10 | — | ||
PMS | 250 | BaTiO3/MoS2 | 0.1 | 超声,40kHz,100W | 奥硝唑 | 50 | 0.056 | ||
PMS | 1000 | BTO纳米颗粒 | 0.5 | 超声,40kHz,100W | 苯并噻唑 | 5 | 0.100 | ||
PMS | 6150 | BTO纳米颗粒 | 10.0 | 水力,1000r/min | 卡马西平 | 2 | 0.0082 | ||
PMS | 6150 | CNTs/BaTiO3 | 5.0 | 水力,1000r/min | 卡马西平 | 2 | 0.021 | ||
PDS | 270 | BTO纳米线 | 2.0 | 超声,40kHz,110W | 布洛芬 | 6 | 0.082 | ||
PDS | 270 | BTO纳米颗粒 | 2.0 | 超声,40kHz,110W | 布洛芬 | 6 | 0.049 | ||
PDS | 1000 | SrBi2B2O7 | 2.0 | 超声,100W | 磺胺嘧啶 | 10 | 0.052 | ||
压电-臭氧 | O3 | 14 | BTO纳米颗粒 | 3.0 | 超声,40kHz,300W | 布洛芬 | 20 | 0.220 | |
O3 | 14 | BTO纳米颗粒 | 3.0 | 水力,1000r/min | 布洛芬 | 20 | 0.130 | ||
O3 | 14 | BTO纳米颗粒 | 3.0 | 水力,1000r/min | 硝基苯 | 10 | 0.130 |
体系 | 化学物质 | 化学物质投加量 /mg·L-1 | 压电材料 | 压电材料投加量 /g·L-1 | 驱动方式 | 污染物 | 污染物浓度 /mg·L-1 | 降解速率 /min-1 | 参考文献 |
---|---|---|---|---|---|---|---|---|---|
压电-Fenton | Fe2+ | 4 | BTO微枝晶 | 9.0 | 超声,40kHz,300W | AO7 | 20 | 0.042 | |
Fe2+ | 10 | BTO纳米颗粒 | 2.0 | 超声,45kHz,300W | 卡马西平 | 5 | 0.026 | ||
压电-过硫酸盐 | PMS | 1000 | MoS2纳米花 | 0.3 | 超声,40kHz,300W | 苯酚 | 10 | 0.020 | |
PMS | 1000 | MoS2纳米花 | 0.3 | 水力,900r/min | 苯酚 | 10 | — | ||
PMS | 250 | BaTiO3/MoS2 | 0.1 | 超声,40kHz,100W | 奥硝唑 | 50 | 0.056 | ||
PMS | 1000 | BTO纳米颗粒 | 0.5 | 超声,40kHz,100W | 苯并噻唑 | 5 | 0.100 | ||
PMS | 6150 | BTO纳米颗粒 | 10.0 | 水力,1000r/min | 卡马西平 | 2 | 0.0082 | ||
PMS | 6150 | CNTs/BaTiO3 | 5.0 | 水力,1000r/min | 卡马西平 | 2 | 0.021 | ||
PDS | 270 | BTO纳米线 | 2.0 | 超声,40kHz,110W | 布洛芬 | 6 | 0.082 | ||
PDS | 270 | BTO纳米颗粒 | 2.0 | 超声,40kHz,110W | 布洛芬 | 6 | 0.049 | ||
PDS | 1000 | SrBi2B2O7 | 2.0 | 超声,100W | 磺胺嘧啶 | 10 | 0.052 | ||
压电-臭氧 | O3 | 14 | BTO纳米颗粒 | 3.0 | 超声,40kHz,300W | 布洛芬 | 20 | 0.220 | |
O3 | 14 | BTO纳米颗粒 | 3.0 | 水力,1000r/min | 布洛芬 | 20 | 0.130 | ||
O3 | 14 | BTO纳米颗粒 | 3.0 | 水力,1000r/min | 硝基苯 | 10 | 0.130 |
1 | 胡徐腾. 我国化石能源清洁利用前景展望[J]. 化工进展, 2017, 36(9): 3145-3151. |
HU Xuteng. Outlook of clean utilization of fossil energy in China[J]. Chemical Industry and Engineering Progress, 2017, 36(9): 3145-3151. | |
2 | 陈菁泉, 连欣燕, 马晓君, 等. 中国全要素能源效率测算及其驱动因素[J]. 中国环境科学, 2022, 42(5): 2453-2463. |
CHEN Jingquan, LIAN Xinyan, MA Xiaojun, et al. Total factor energy efficiency measurement and drivers in China[J]. China Environmental Science, 2022, 42(5): 2453-2463. | |
3 | 张羽就, 席佳锐, 陈玲, 等. 中国城镇污水处理厂能耗统计与基准分析[J]. 中国给水排水, 2021, 37(8): 8-17. |
ZHANG Yujiu, XI Jiarui, CHEN Ling, et al. Energy consumption statistics and benchmarking analysis of urban wastewater treatment plants(WWTPs) in China[J]. China Water & Wastewater, 2021, 37(8): 8-17. | |
4 | 宋鹏, 张慧敏, 毛显强. 面向碳达峰目标的重庆市碳减排路径[J]. 中国环境科学, 2022, 42(3): 1446-1455. |
SONG Peng, ZHANG Huimin, MAO Xianqiang. Research on Chongqing’s carbon emission reduction path towards the goal of carbon peak[J]. China Environmental Science, 2022, 42(3): 1446-1455. | |
5 | 黄晟, 王静宇, 郭沛, 等. 碳中和目标下能源结构优化的近期策略与远期展望[J]. 化工进展, 2022, 41(11): 5695-5708. |
HUANG Sheng, WANG Jingyu, GUO Pei, et al. Short-term strategy and long-term prospect of energy structure optimization under carbon neutrality target[J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5695-5708. | |
6 | ZHENG Ying, ZHUANG Wei, ZHAO Mengshang, et al. Role of driven approach on the piezoelectric ozonation processes: Comparing ultrasound with hydro-energy as driving forces[J]. Journal of Hazardous Materials, 2021, 418: 126392. |
7 | ZHENG Ying, YANG Jing, GONG Bingrou, et al. Hydraulic-driven piezo-activation of peroxymonosulfate for carbamazepine degradation with ultralow energy consumption[J]. Chemical Engineering Journal, 2022, 441: 136116. |
8 | ZHANG An, LIU Zhiyong, GENG Xinhui, et al. Ultrasonic vibration driven piezocatalytic activity of lead-free K0.5Na0.5NbO3 materials[J]. Ceramics International, 2019, 45(17): 22486-22492. |
9 | YUAN Baowei, WU Jiang, QIN Ni, et al. Enhanced piezocatalytic performance of (Ba, Sr)TiO3 nanowires to degrade organic pollutants[J]. ACS Applied Nano Materials, 2018, 1(9): 5119-5127. |
10 | FENG Yawei, LING Lili, WANG Yanxu, et al. Engineering spherical lead zirconate titanate to explore the essence of piezo-catalysis[J]. Nano Energy, 2017, 40: 481-486. |
11 | LIANG Zhang, YAN Changfeng, RTIMI Sami, et al. Piezoelectric materials for catalytic/photocatalytic removal of pollutants: Recent advances and outlook[J]. Applied Catalysis B: Environmental, 2019, 241: 256-269. |
12 | TU Shuchen, GUO Yuxi, ZHANG Yihe, et al. Piezocatalysis and piezo-photocatalysis: Catalysts classification and modification strategy, reaction mechanism, and practical application[J]. Advanced Functional Materials, 2020, 30(48): 2005158. |
13 | WANG Mengye, WANG Biao, HUANG Feng, et al. Enabling PIEZOpotential in PIEZOelectric semiconductors for enhanced catalytic activities[J]. Angewandte Chemie International Edition, 2019, 58(23): 7526-7536. |
14 | 孙奇薇, 薛国梁, 周学凡, 等. 压电催化降解有机污染物的研究进展[J]. 中国有色金属学报, 2021, 31(8): 1997-2013. |
SUN Qiwei, XUE Guoliang, ZHOU Xuefan, et al. Research progress in piezoelectric degradation of organic pollutants[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(8): 1997-2013. | |
15 | HONG Kuangsheng, XU Huifang, KONISHI Hiromi, et al. Piezoelectrochemical effect: A new mechanism for azo dye decolorization in aqueous solution through vibrating piezoelectric microfibers[J]. The Journal of Physical Chemistry C, 2012, 116(24): 13045-13051. |
16 | JIN Chengchao, LIU Daiming, HU Jing, et al. The role of microstructure in piezocatalytic degradation of organic dye pollutants in wastewater[J]. Nano Energy, 2019, 59: 372-379. |
17 | MASEKELA Daniel, HINTSHO-MBITA Nomso C, Simanye SAM, et al. Application of BaTiO3-based catalysts for piezocatalytic, photocatalytic and piezo-photocatalytic degradation of organic pollutants and bacterial disinfection in wastewater: A comprehensive review[J]. Arabian Journal of Chemistry, 2023, 16(2): 104473. |
18 | LIN He, WU Zheng, JIA Yanmin, et al. Piezoelectrically induced mechano-catalytic effect for degradation of dye wastewater through vibrating Pb(Zr0.52Ti0.48)O3 fibers[J]. Applied Physics Letters, 2014, 104(16): 162907. |
19 | WU Jyh Ming, CHANG Wei’en, CHANG Yuting, et al. Piezo-catalytic effect on the enhancement of the ultra-high degradation activity in the dark by single-and few-layers MoS2 nanoflowers[J]. Advanced Materials, 2016, 28(19): 3718-3725. |
20 | LAN Shenyu, FENG Jinxi, XIONG Ya, et al. Performance and mechanism of piezo-catalytic degradation of 4-chlorophenol: Finding of effective piezo-dechlorination[J]. Environmental Science & Technology, 2017, 51(11): 6560-6569. |
21 | YOU Huilin, JIA Yanmin, WU Zheng, et al. Strong piezo-electrochemical effect of multiferroic BiFeO3 square micro-sheets for mechanocatalysis[J]. Electrochemistry Communications, 2017, 79: 55-58. |
22 | TU Shuchen, HUANG Hongwei, ZHANG Tierui, et al. Controllable synthesis of multi-responsive ferroelectric layered perovskite-like Bi4Ti3O12: Photocatalysis and piezoelectric-catalysis and mechanism insight[J]. Applied Catalysis B: Environmental, 2017, 219: 550-562. |
23 | XU Xiaoli, WU Zheng, XIAO Lingbo, et al. Strong piezo-electro-chemical effect of piezoelectric BaTiO3 nanofibers for vibration-catalysis[J]. Journal of Alloys and Compounds, 2018, 762: 915-921. |
24 | XU Xiaoli, JIA Yanmin, XIAO Lingbo, et al. Strong vibration-catalysis of ZnO nanorods for dye wastewater decolorization via piezo-electro-chemical coupling[J]. Chemosphere, 2018, 193: 1143-1148. |
25 | WU Jiang, QIN Ni, BAO Dinghua. Effective enhancement of piezocatalytic activity of BaTiO3 nanowires under ultrasonic vibration[J]. Nano Energy, 2018, 45: 44-51. |
26 | WU Jiang, XU Qi, LIN Enzhu, et al. Insights into the role of ferroelectric polarization in piezocatalysis of nanocrystalline BaTiO3 [J]. ACS Applied Materials & Interfaces, 2018, 10(21): 17842-17849. |
27 | WANG Shensong, WU Zheng, CHEN Jie, et al. Lead-free sodium niobate nanowires with strong piezo-catalysis for dye wastewater degradation[J]. Ceramics International, 2019, 45(9): 11703-11708. |
28 | YU Chengye, TAN Mengxi, LI Yang, et al. Ultrahigh piezocatalytic capability in eco-friendly BaTiO3 nanosheets promoted by 2D morphology engineering[J]. Journal of Colloid and Interface Science, 2021, 596: 288-296. |
29 | LIU Fengling, CHEN Haoxuan, XU Chenmin, et al. Monoclinic dibismuth tetraoxide (m-Bi2O4) for piezocatalysis: New use for neglected materials[J]. Chemical Communications, 2021, 57(22): 2740-2743. |
30 | WANG Penglei, LI Xinyong, FAN Shiying, et al. Impact of oxygen vacancy occupancy on piezo-catalytic activity of BaTiO3 nanobelt[J]. Applied Catalysis B: Environmental, 2020, 279: 119340. |
31 | SUN Yanhua, LI Xiaoning, VIJAYAKUMAR Amruthalakshmi, et al. Hydrogen generation and degradation of organic dyes by new piezocatalytic 0.7BiFeO3-0.3BaTiO3 nanoparticles with proper band alignment[J]. ACS Applied Materials & Interfaces, 2021, 13(9): 11050-11057. |
32 | WANG Chunyang, HU Cheng, CHEN Fang, et al. Design strategies and effect comparisons toward efficient piezocatalytic system[J]. Nano Energy, 2023, 107: 108093. |
33 | Yanping HA, CHEN Yinglong, SHEN Minghu, et al. Hierarchical MoS2 hollow microspheres with high piezoelectric catalytic performance prepared by the soft-template method[J]. Inorganic Chemistry Communications, 2023, 148: 110349. |
34 | LI Hongjing, XIONG Yi, WANG Yumin, et al. High piezocatalytic capability in CuS/MoS2 nanocomposites using mechanical energy for degrading pollutants[J]. Journal of Colloid and Interface Science, 2022, 609: 657-666. |
35 | HE Qingshen, YI Yuyan, SHI Wenjun, et al. Determination of the key role to affect the piezocatalytic activity of graphitic carbon nitride for tetracycline hydrochloride degradation in water[J]. Chemosphere, 2023, 317: 137828. |
36 | HE Dongcai, WANG Weijie, FENG Nan, et al. Defect-modified nano-BaTiO3 as a sonosensitizer for rapid and high-efficiency sonodynamic sterilization[J]. ACS Applied Materials & Interfaces, 2023, 15(12): 15140-15151. |
37 | WANG Chunyang, CHEN Fang, HU Cheng, et al. Efficient piezocatalytic H2O2 production of atomic-level thickness Bi4Ti3O12 nanosheets with surface oxygen vacancy[J]. Chemical Engineering Journal, 2022, 431: 133930. |
38 | ZHENG Ying, ZHUANG Wei, ZHANG Xiaohui, et al. Grape-like CNTs/BaTiO3 nanocatalyst boosted hydraulic-driven piezo-activation of peroxymonosulfate for carbamazepine removal[J]. Chemical Engineering Journal, 2022, 449: 137826. |
39 | XIA Dehua, TANG Zhuoyun, WANG Yunchen, et al. Piezo-catalytic persulfate activation system for water advanced disinfection: Process efficiency and inactivation mechanisms[J]. Chemical Engineering Journal, 2020, 400: 125894. |
40 | YANG Guodong, CHEN Qin, WANG Weijun, et al. Cocatalyst engineering in piezocatalysis: A promising strategy for boosting hydrogen evolution[J]. ACS Applied Materials & Interfaces, 2021, 13(13): 15305-15314. |
41 | WEI Yan, ZHANG Yiwen, GENG Wei, et al. Efficient bifunctional piezocatalysis of Au/BiVO4 for simultaneous removal of 4-chlorophenol and Cr (Ⅵ) in water[J]. Applied Catalysis B: Environmental, 2019, 259: 118084. |
42 | PAN Meilan, ZHANG Chen, WANG Jiong, et al. Multifunctional piezoelectric heterostructure of BaTiO3@Graphene: De complexation of Cu-EDTA and recovery of Cu[J]. Environmental Science & Technology, 2019, 53(14): 8342-8351. |
43 | PAN Meilan, LIU Subiao, CHEW Jiawei. Unlocking the high redox activity of MoS2 on dual-doped graphene as a superior piezocatalyst[J]. Nano Energy, 2020, 68: 104366. |
44 | KUMAR Manish, SINGH Gurpreet, VAISH Rahul. A reduced graphene oxide/bismuth vanadate composite as an efficient piezocatalyst for degradation of organic dye[J]. Materials Advances, 2021, 2(12): 4093-4101. |
45 | LI Shengjuan, ZHANG Mei, GAO Yulai, et al. ZnO-Zn/CNT hybrid film as light-free nanocatalyst for degradation reaction[J]. Nano Energy, 2013, 2(6): 1329-1336. |
46 | Weibiao LYU, KONG L, LAN Shenyu, et al. Enhancement effect in the piezoelectric degradation of organic pollutants by piezo-Fenton process[J]. Journal of Chemical Technology & Biotechnology, 2017, 92: 152-156. |
47 | 张森, 郑莹, 韩仕强, 等. 低频超声驱动BaTiO3压电-芬顿体系降解水中卡马西平[J]. 净水技术, 2020, 39(7): 130-138. |
ZHANG Sen, ZHENG Ying, HAN Shiqiang, et al. Degradation of carbamazepine in water by piezo-Fenton process based on BaTiO3 driven with low frequency ultrasound[J]. Water Purification Technology, 2020, 39(7): 130-138. | |
48 | LIU Shuhui, JING Binghua, NIE Chunyang, et al. Piezoelectric activation of peroxymonosulfate by MoS2 nanoflowers for the enhanced degradation of aqueous organic pollutants[J]. Environmental Science: Nano, 2021, 8(3): 784-794. |
49 | CHEN Yanxi, LAN Shenyu, ZHU Mingshan. Construction of piezoelectric BaTiO3/MoS2 heterojunction for boosting piezo-activation of peroxymonosulfate[J]. Chinese Chemical Letters, 2021, 32(6): 2052-2056. |
50 | LAN Shenyu, CHEN Yanxi, ZENG Lixi, et al. Piezo-activation of peroxymonosulfate for benzothiazole removal in water[J]. Journal of Hazardous Materials, 2020, 393: 122448. |
51 | PENG Fei, YIN Ran, LIAO Yuhong, et al. Kinetics and mechanisms of enhanced degradation of ibuprofen by piezo-catalytic activation of persulfate[J]. Chemical Engineering Journal, 2020, 392: 123818. |
52 | ZHU Mude, CHEN Xueqin, TANG Yi, et al. Piezo-promoted persulfate activation by SrBi2B2O7 for efficient sulfadiazine degradation from water[J]. Journal of Hazardous Materials, 2022, 437: 129359. |
53 | 庄玮, 杨婧, 龚冰柔, 等. 钛酸钡压电臭氧化降解水中的硝基苯[J]. 中国环境科学, 2021, 41(10): 4654-4661. |
ZHUANG Wei, YANG Jing, GONG Bingrou, et al. Degradation of nitrobenzene from water by piezoelectric ozonation of Barium titanate[J]. China Environmental Science, 2021, 41(10): 4654-4661. | |
54 | SHAO Dengkui, ZHANG Ling, SUN Songmei, et al. Oxygen reduction reaction for generating H2O2 through a piezo-catalytic process over bismuth oxychloride[J]. ChemSusChem, 2018, 11(3): 527-531. |
55 | RAN Maoxi, XU Hai, BAO Yan, et al. Selective production of CO from organic pollutants by coupling piezocatalysis and advanced oxidation processes[J]. Angewandte Chemie International Edition, 2023, 62(22): e202303728. |
56 | LIU Wenyuan, FU Pengbo, ZHANG Yayun, et al. Efficient hydrogen production from wastewater remediation bypiezoelectricity coupling advanced oxidation processes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(7): e2218813120. |
57 | YOU Huilin, WU Zheng, ZHANG Luohong, et al. Harvesting the vibration energy of BiFeO3 nanosheets for hydrogen evolution[J]. Angewandte Chemie International Edition, 2019, 58(34): 11779-11784. |
58 | MENG Fanqing, MA Wei, DUAN Chunying, et al. High efficient degradation of levofloxacin by edge-selectively Fe@3D-WS2: Self-renewing behavior and degradation mechanism study[J]. Applied Catalysis B: Environmental, 2019, 252: 187-197. |
59 | ZHAO Xiaona, LEI Yuanchao, FANG Pengfei, et al. Piezotronic effect of single/few-layers MoS2 nanosheets composite with TiO2 nanorod heterojunction[J]. Nano Energy, 2019, 66: 104168. |
60 | FENG Yawei, LI Hao, LING Lili, et al. Enhanced photocatalytic degradation performance by fluid-induced piezoelectric field[J]. Environmental Science & Technology, 2018, 52(14): 7842-7848. |
61 | ZHUANG Wei, ZHENG Ying, SHUAI Yi, et al. Correction: Hydraulic-driven piezoelectric ozonation process for nitrobenzene degradation: Synergy, energy consumption, impact factors, mechanism, and application potential[J]. Environmental Science: Water Research & Technology, 2023, 9(2): 654. |
62 | 王勇, 王颖. 中国实现碳减排双控目标的可行性及最优路径——能源结构优化的视角[J]. 中国环境科学, 2019, 39(10): 4444-4455. |
WANG Yong, WANG Ying. Feasibility and optimal pathway of China’s double targets for carbon reduction—The perspective of energy structure optimization[J]. China Environmental Science, 2019, 39(10): 4444-4455. | |
63 | 黄晟, 王静宇, 李振宇. 碳中和目标下石油与化学工业绿色低碳发展路径分析[J]. 化工进展, 2022, 41(4): 1689-1703. |
HUANG Sheng, WANG Jingyu, LI Zhenyu. Analysis of green and low-carbon development path of petroleum and chemical industry under the goal of carbon neutrality[J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1689-1703. | |
64 | WANG Zichen, XIANG Manqi, HUO Bingjie, et al. A novel ZnO/CQDs/PVDF piezoelectric system for efficiently degradation of antibiotics by using water flow energy in pipeline: Performance and mechanism[J]. Nano Energy, 2023, 107: 108162. |
65 | WANG Jingxue, LIANG Yanting, WANG Zichen, et al. High efficiently degradation of organic pollutants via low-speed water flow activation of Cu2O@MoS2/PVDF modified pipeline with piezocatalysis performance[J]. Chemical Engineering Journal, 2023, 458: 141409. |
[1] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[2] | ZHANG Pingping, DING Shuhai, GAO Jingjing, ZHAO Min, YU Haixiang, LIU Yuehong, GU Lin. Carbon quantum dots modified semiconductor composite photocatalysts for degradation of organic pollutants in water [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5487-5500. |
[3] | DUAN Yi, ZOU Ye, ZHOU Shukui, YANG Liu. Progress in the degradation of organic pollutants by H2O2/PMS/PDS activated by transition metal single-atom catalysts [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4147-4158. |
[4] | XU Zetao, CAO Yiting, WANG Qiao, WANG Zhihong. Research progress of peroxymonosulfate activated by solid-phase cobalt-based catalyst in water treatment [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 730-739. |
[5] | LIU Xiaobei, ZHANG Xihua, XIONG Mei, ZHAO He. Analysis on the characteristic organic pollutants from discharge wastewater of spent lithium batteries [J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5619-5629. |
[6] | WANG Wenxia, LIU Xiaofeng, CHEN Xi, XU Yanhong, MENG Zhenbang, ZHENG Junxia, AN Taicheng. Research advances of synthesis and applications of porous g-C3N4-based photocatalyst [J]. Chemical Industry and Engineering Progress, 2022, 41(1): 300-309. |
[7] | SUN Liuxin, WANG Peiming, YANG Junhao, LIU Qing, CUI Mifen, QIAO Xu. Research progress on the effect of ionic strength on the removal of organic pollutants from wastewater by adsorbents [J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3239-3257. |
[8] | CHEN Huichao, LI Xue, LIANG Xiao, WANG Meng. Research development of mechanochemistry in environmental pollution control [J]. Chemical Industry and Engineering Progress, 2021, 40(11): 6332-6346. |
[9] | Zhenguo ZHANG, Xitao LIU, Ling LAI, Xiujuan FENG. Progress in degradation of chlorinated organic pollutants by mechanochemical method [J]. Chemical Industry and Engineering Progress, 2021, 40(1): 487-504. |
[10] | Pengfei XIAO, Lu AN, Shuang HAN. Research advances on applying carbon materials to activate persulfate in advanced oxidation technology [J]. Chemical Industry and Engineering Progress, 2020, 39(8): 3293-3307. |
[11] | Ruoxuan ZHANG,Peng WANG,Xuchao ZHANG,Wenyan DUAN. Formation, stability and influencing factors of environmentally persistent free radicals in soil: a review [J]. Chemical Industry and Engineering Progress, 2020, 39(4): 1528-1538. |
[12] | Wenting SONG,Jing GUO,Qianqian YANG,Gang CHENG. Research progress on degradation of sludge organic pollutants [J]. Chemical Industry and Engineering Progress, 2020, 39(1): 380-386. |
[13] | Xiaojuan LI,Fengzhen LIAO,Lanmei YE,Zhenglin LIU. Progress in the applications of metal-organic frameworks and derivatives activate persulfate in water treatment [J]. Chemical Industry and Engineering Progress, 2019, 38(10): 4712-4721. |
[14] | Xiaodan YANG, Yuru WANG, Minrui LI. Preparation, modification of nanoscale zero valent iron and its application for the removal of heavy metals andorganic pollutants from wastewater [J]. Chemical Industry and Engineering Progress, 2019, 38(07): 3412-3424. |
[15] | Zhihui HUANG, Zhiyong JI, Xi CHEN, Xiaofu GUO, Shizhao WANG, Junsheng YUAN. Degradation of organic pollutants in water by persulfate advanced oxidation [J]. Chemical Industry and Engineering Progress, 2019, 38(05): 2461-2470. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |