Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (8): 4642-4653.DOI: 10.16085/j.issn.1000-6613.2023-1130
• Resources and environmental engineering • Previous Articles
ZENG Wuqing1,2(), WANG Yu1(), BU Qingguo1,2, MA Shuo1, BAI Dongming2, ZHANG Zongjian2, ZHANG Peng2, MA Dandan1, WANG Shengbo1, WANG Runqi1, WU Liwen1, LIU Chen1, MA Hongting1
Received:
2023-07-06
Revised:
2023-09-05
Online:
2024-09-02
Published:
2024-08-15
Contact:
WANG Yu
曾武清1,2(), 王予1(), 卜庆国1,2, 马硕1, 白东明2, 张宗建2, 张鹏2, 马丹丹1, 王圣博1, 王润其1, 武丽雯1, 刘晨1, 马洪亭1
通讯作者:
王予
作者简介:
曾武清(1981—),男,博士研究生,研究方向为资源与环境。E-mail: 317177753@qq.com。
基金资助:
CLC Number:
ZENG Wuqing, WANG Yu, BU Qingguo, MA Shuo, BAI Dongming, ZHANG Zongjian, ZHANG Peng, MA Dandan, WANG Shengbo, WANG Runqi, WU Liwen, LIU Chen, MA Hongting. Influence of mixed burning of aged refuse on the incineration characteristics of waste furnace[J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4642-4653.
曾武清, 王予, 卜庆国, 马硕, 白东明, 张宗建, 张鹏, 马丹丹, 王圣博, 王润其, 武丽雯, 刘晨, 马洪亭. 陈腐垃圾掺烧对垃圾炉焚烧特性的影响[J]. 化工进展, 2024, 43(8): 4642-4653.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1130
工业分析/% | 元素分析/% | 低位热值/kJ·kg-1 | 密度/kg·m-3 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mar | Var | FCar | Aar | Car | Har | Oar | Nar | Sar | Clar | ||
45.69 | 25.29 | 9.02 | 20.00 | 19.44 | 2.96 | 10.97 | 0.49 | 0.02 | 0.43 | 7315 | 331 |
工业分析/% | 元素分析/% | 低位热值/kJ·kg-1 | 密度/kg·m-3 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mar | Var | FCar | Aar | Car | Har | Oar | Nar | Sar | Clar | ||
45.69 | 25.29 | 9.02 | 20.00 | 19.44 | 2.96 | 10.97 | 0.49 | 0.02 | 0.43 | 7315 | 331 |
求解流程 | 项目 | 参数 |
---|---|---|
模型选择 | 能量方程 | ON |
湍流模型 | 标准k-ε/标准壁面模型 | |
组分模型 | 有限速率~涡耗散模型 | |
辐射模型 | P1模型 | |
边界设置 | 燃料入口 | 速度入口,由FLIC软件输出风温、风速和气体组分含量并通过UDF编写 |
二次风入口 | 速度入口,前、后拱二次风配比0.87∶1 | |
焚烧炉出口 | 压力出口,数值为-80Pa | |
求解方法 | 求解器 | Simple算法 |
求解流程 | 项目 | 参数 |
---|---|---|
模型选择 | 能量方程 | ON |
湍流模型 | 标准k-ε/标准壁面模型 | |
组分模型 | 有限速率~涡耗散模型 | |
辐射模型 | P1模型 | |
边界设置 | 燃料入口 | 速度入口,由FLIC软件输出风温、风速和气体组分含量并通过UDF编写 |
二次风入口 | 速度入口,前、后拱二次风配比0.87∶1 | |
焚烧炉出口 | 压力出口,数值为-80Pa | |
求解方法 | 求解器 | Simple算法 |
陈腐垃圾 | 元素分析% | 工业分析/% | 低位热值/kJ·kg-1 | 密度/kg·m-3 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Car | Har | Oar | Nar | Sar | Clar | Mar | Var | FCar | Aar | |||
a | 8.93 | 1.22 | 4.44 | 0.34 | 0.12 | 0.45 | 38.69 | 15.01 | 0.49 | 45.81 | 2110 | 612 |
b | 11.99 | 1.31 | 9.34 | 0.27 | 0.12 | 0.17 | 34.82 | 22.66 | 0.54 | 41.98 | 3046 | 540 |
c | 13.95 | 1.66 | 1.33 | 0.73 | 0.14 | 0.11 | 38.65 | 17.34 | 0.58 | 43.43 | 4020 | 513 |
d | 16.05 | 2.09 | 2.86 | 0.41 | 0.16 | 0.27 | 43.21 | 17.96 | 3.88 | 34.95 | 5156 | 454 |
陈腐垃圾 | 元素分析% | 工业分析/% | 低位热值/kJ·kg-1 | 密度/kg·m-3 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Car | Har | Oar | Nar | Sar | Clar | Mar | Var | FCar | Aar | |||
a | 8.93 | 1.22 | 4.44 | 0.34 | 0.12 | 0.45 | 38.69 | 15.01 | 0.49 | 45.81 | 2110 | 612 |
b | 11.99 | 1.31 | 9.34 | 0.27 | 0.12 | 0.17 | 34.82 | 22.66 | 0.54 | 41.98 | 3046 | 540 |
c | 13.95 | 1.66 | 1.33 | 0.73 | 0.14 | 0.11 | 38.65 | 17.34 | 0.58 | 43.43 | 4020 | 513 |
d | 16.05 | 2.09 | 2.86 | 0.41 | 0.16 | 0.27 | 43.21 | 17.96 | 3.88 | 34.95 | 5156 | 454 |
工况 | 掺混比/% | 陈腐垃圾低位热值/kJ·kg-1 |
---|---|---|
1 | 0 | 4020 |
2 | 10 | 4020 |
3 | 20 | 4020 |
4 | 30 | 4020 |
5 | 10 | 2110 |
6 | 10 | 3046 |
7 | 10 | 5156 |
工况 | 掺混比/% | 陈腐垃圾低位热值/kJ·kg-1 |
---|---|---|
1 | 0 | 4020 |
2 | 10 | 4020 |
3 | 20 | 4020 |
4 | 30 | 4020 |
5 | 10 | 2110 |
6 | 10 | 3046 |
7 | 10 | 5156 |
测点 | 实测值/K | 模拟值/K | 相对误差/% |
---|---|---|---|
T1 | 1068 | 1045 | -2.15 |
T2 | 1332 | 1386 | 4.05 |
T3 | 1503 | 1510 | 0.47 |
T4 | 1308 | 1282 | -1.99 |
T5 | 1090 | 1052 | -3.49 |
T6 | 893 | 923 | 3.36 |
测点 | 实测值/K | 模拟值/K | 相对误差/% |
---|---|---|---|
T1 | 1068 | 1045 | -2.15 |
T2 | 1332 | 1386 | 4.05 |
T3 | 1503 | 1510 | 0.47 |
T4 | 1308 | 1282 | -1.99 |
T5 | 1090 | 1052 | -3.49 |
T6 | 893 | 923 | 3.36 |
测点 | 10% | 20% | 30% | ||||||
---|---|---|---|---|---|---|---|---|---|
实测值/K | 模拟值/K | 相对误差/% | 实测值/K | 模拟值/K | 相对误差/% | 实测值/K | 模拟值/K | 相对误差/% | |
T1 | 1017 | 1006 | -1.08 | 930 | 945 | 1.61 | 915 | 930 | 1.64 |
T2 | 1230 | 1257 | 2.20 | 1167 | 1206 | 3.34 | 1092 | 1100 | 0.73 |
T3 | 1442 | 1417 | -1.73 | 1280 | 1300 | 1.56 | 1217 | 1238 | 1.73 |
T4 | 1239 | 1215 | -1.94 | 1177 | 1158 | -1.61 | 1050 | 1067 | 1.62 |
T5 | 1007 | 1017 | 0.99 | 995 | 1005 | 1.01 | 979 | 993 | 1.43 |
T6 | 882 | 901 | 2.15 | 871 | 893 | 2.53 | 860 | 879 | 2.21 |
测点 | 10% | 20% | 30% | ||||||
---|---|---|---|---|---|---|---|---|---|
实测值/K | 模拟值/K | 相对误差/% | 实测值/K | 模拟值/K | 相对误差/% | 实测值/K | 模拟值/K | 相对误差/% | |
T1 | 1017 | 1006 | -1.08 | 930 | 945 | 1.61 | 915 | 930 | 1.64 |
T2 | 1230 | 1257 | 2.20 | 1167 | 1206 | 3.34 | 1092 | 1100 | 0.73 |
T3 | 1442 | 1417 | -1.73 | 1280 | 1300 | 1.56 | 1217 | 1238 | 1.73 |
T4 | 1239 | 1215 | -1.94 | 1177 | 1158 | -1.61 | 1050 | 1067 | 1.62 |
T5 | 1007 | 1017 | 0.99 | 995 | 1005 | 1.01 | 979 | 993 | 1.43 |
T6 | 882 | 901 | 2.15 | 871 | 893 | 2.53 | 860 | 879 | 2.21 |
测点 | 2110 kJ/kg | 3046 kJ/kg | 5156 kJ/kg | ||||||
---|---|---|---|---|---|---|---|---|---|
实测值/K | 模拟值/K | 相对误差/% | 实测值/K | 模拟值/K | 相对误差/% | 实测值/K | 模拟值/K | 相对误差/% | |
T1 | 940 | 961 | 2.23 | 1005 | 993 | -1.19 | 1040 | 1028 | -1.15 |
T2 | 1171 | 1191 | 1.71 | 1217 | 1236 | 1.56 | 1295 | 1320 | 1.93 |
T3 | 1307 | 1343 | 2.75 | 1390 | 1375 | -1.08 | 1462 | 1439 | -1.57 |
T4 | 1190 | 1177 | -1.09 | 1210 | 1196 | -1.16 | 1250 | 1233 | -1.36 |
T5 | 995 | 1014 | 1.91 | 1005 | 1014 | 0.90 | 1027 | 1023 | -0.39 |
T6 | 870 | 892 | 2.53 | 873 | 896 | 2.63 | 899 | 912 | 1.45 |
测点 | 2110 kJ/kg | 3046 kJ/kg | 5156 kJ/kg | ||||||
---|---|---|---|---|---|---|---|---|---|
实测值/K | 模拟值/K | 相对误差/% | 实测值/K | 模拟值/K | 相对误差/% | 实测值/K | 模拟值/K | 相对误差/% | |
T1 | 940 | 961 | 2.23 | 1005 | 993 | -1.19 | 1040 | 1028 | -1.15 |
T2 | 1171 | 1191 | 1.71 | 1217 | 1236 | 1.56 | 1295 | 1320 | 1.93 |
T3 | 1307 | 1343 | 2.75 | 1390 | 1375 | -1.08 | 1462 | 1439 | -1.57 |
T4 | 1190 | 1177 | -1.09 | 1210 | 1196 | -1.16 | 1250 | 1233 | -1.36 |
T5 | 995 | 1014 | 1.91 | 1005 | 1014 | 0.90 | 1027 | 1023 | -0.39 |
T6 | 870 | 892 | 2.53 | 873 | 896 | 2.63 | 899 | 912 | 1.45 |
1 | HAN Xiaoqu, CHANG Hongzhang, WANG Chuan, et al. Tracking the life-cycle greenhouse gas emissions of municipal solid waste incineration power plant: A case study in Shanghai[J]. Journal of Cleaner Production, 2023, 398: 136635. |
2 | NATH Aishi, DEBNATH Animesh. A short review on landfill leachate treatment technologies[J]. Materials Today: Proceedings, 2022, 67: 1290-1297. |
3 | KAMAL Arailym, MAKHATOVA Ardak, YERGALI Bakzhan, et al. Biological treatment, advanced oxidation and membrane separation for landfill leachate treatment: A review[J]. Sustainability, 2022, 14(21): 14427. |
4 | HE Haijie, WU Tao, QIU Zhanhong, et al. Enhanced methane oxidation potential of landfill cover soil modified with aged refuse[J]. Atmosphere, 2022, 13(5): 802. |
5 | 白秀佳, 张红玉, 顾军, 等. 填埋场陈腐垃圾理化特性与资源化利用研究[J]. 环境工程, 2021, 39(2): 116-120, 124. |
BAI Xiujia, ZHANG Hongyu, GU Jun, et al. Physico-chemical properties and resource utilization of stale refuse in landfill[J]. Environmental Engineering, 2021, 39(2): 116-120, 124. | |
6 | 张志彬, 岳波, 王宁, 等. 准好氧填埋工艺陈腐垃圾的理化特性变化规律[J]. 环境工程学报, 2014, 8(9): 3959-3964. |
ZHANG Zhibin, YUE Bo, WANG Ning, et al. Physic-chemical properties variations of aged refuse in semi-aerobic landfills[J]. Chinese Journal of Environmental Engineering, 2014, 8(9): 3959-3964. | |
7 | ZHU Zihan, ZHAO Youcai, ZHU Ying, et al. Efficient treatment of mature landfill leachate with a novel composite biological trickle reactor developed using refractory domestic waste and aged refuse[J]. Journal of Cleaner Production, 2021, 305: 127194. |
8 | 曾祥浩, 马晓茜, 廖艳芬, 等. 900t/d高热值垃圾焚烧炉污泥掺烧数值模拟[J]. 工程热物理学报, 2020, 41(9): 2324-2332. |
ZENG Xianghao, MA Xiaoqian, LIAO Yanfen, et al. Numerical simulation of co-combustion of sludge in a 900t/d waste incinerator[J]. Journal of Engineering Thermophysics, 2020, 41(9): 2324-2332. | |
9 | 喻武, 朱浩. 协同焚烧污泥对垃圾焚烧炉燃烧过程的影响实验和模拟研究[J]. 可再生能源, 2021, 39(11): 1435-1440. |
YU Wu, ZHU Hao. Experimental and simulation study on the effect of co-incinerating sludge on the combustion process of waste incinerator[J]. Renewable Energy Resources, 2021, 39(11): 1435-1440. | |
10 | 杨栩聪, 廖艳芬, 林涛, 等. 350t/d垃圾焚烧炉污泥掺混燃烧与SNCR脱硝特性的数值模拟[J]. 中国电机工程学报, 2020, 40(21): 6964-6973. |
YANG Xucong, LIAO Yanfen, LIN Tao, et al. Numerical study of 350t/d MSW incinerator on sludge blending combustion and SNCR denitration characteristics[J]. Proceedings of the CSEE, 2020, 40(21): 6964-6973. | |
11 | 尹文华, 龙世康, 何志远, 等. 陈腐垃圾掺烧对垃圾焚烧烟气中污染物排放的影响[J]. 环境工程, 2022, 40(7): 76-80, 87. |
YIN Wenhua, LONG Shikang, HE Zhiyuan, et al. Impact of co-incineration of mswi with aged refuse on gaseous pollutants emission[J]. Environmental Engineering, 2022, 40(7): 76-80, 87. | |
12 | LI Debo, FENG Yongxin, CHEN Zhihao, et al. Effects of atmosphere and blending ratios on emission characteristics of pollutants from co-combustion of municipal solid waste and aged refuse[J]. Asia-Pacific Journal of Chemical Engineering, 2022, 17(2): e2746. |
13 | ZHOU H, JENSEN A D, GLARBORG P, et al. Numerical modeling of straw combustion in a fixed bed[J]. Fuel, 2005, 84(4): 389-403. |
14 | LUO Zixue, CHEN Wei, WANG Yue, et al. Numerical simulation of combustion and characteristics of fly ash and slag in a “V-type” waste incinerator[J]. Energies, 2021, 14(22): 7518. |
15 | SHIN Donghoon, CHOI Sangmin. The combustion of simulated waste particles in a fixed bed[J]. Combustion and Flame, 2000, 121(1/2): 167-180. |
16 | YANG Y B, RYU C, GOODFELLOW J, et al. Modelling waste combustion in grate furnaces[J]. Process Safety and Environmental Protection, 2004, 82(3): 208-222. |
17 | YANG Y B, GOODFELLOW J, GOH Y R, et al. Investigation of channel formation due to random packing in a burning waste bed[J]. Process Safety and Environmental Protection, 2001, 79(5): 267-277. |
18 | YAN Mi, ANTONI, WANG Jingyi, et al. Numerical investigation of MSW combustion influenced by air preheating in a full-scale moving grate incinerator[J]. Fuel, 2021, 285: 119193. |
19 | MANKEED Panuphong, ONSREE Thossaporn, NAQVI Salman Raza, et al. Kinetic and thermodynamic analyses for pyrolysis of hemp hurds using discrete distributed activation energy model[J]. Case Studies in Thermal Engineering, 2022, 31: 101870. |
20 | LAI Adrian Chun Hin, LAW Adrian Wing-Keung. Numerical modeling of municipal waste bed incineration[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2019, 29(2): 504-522. |
21 | YANG Yaobin, Changkook RYU, KHOR Adela, et al. Fuel size effect on pinewood combustion in a packed bed[J]. Fuel, 2005, 84(16): 2026-2038. |
22 | YANG Y B, NASSERZADEH V, GOODFELLOW J, et al. Simulation of channel growth in a burning bed of solids[J]. Chemical Engineering Research and Design, 2003, 81(2): 221-232. |
23 | AJORLOO Mojtaba, GHODRAT Maryam, SCOTT Jason, et al. Recent advances in thermodynamic analysis of biomass gasification: A review on numerical modelling and simulation[J]. Journal of the Energy Institute, 2022, 102: 395-419. |
24 | RYU C, YANG Y B, NASSERZADEH V, et al. Thermal reaction modeling of a large municipal solid waste incinerator[J]. Combustion Science and Technology, 2004, 176(11): 1891-1907. |
25 | 杨煜强, 王坤, 黄焕林, 等. 基于生活垃圾分类的厨余垃圾采样方法研究[J]. 环境科学学报, 2015, 35(2): 570-575. |
YANG Yuqiang, WANG Kun, HUANG Huanlin, et al. Kitchen waste sampling method based on domestic waste classification[J]. Acta Scientiae Circumstantiae, 2015, 35(2): 570-575. |
[1] | YIN Chenyang, LIU Yongfeng, CHEN Ruizhe, ZHANG Lu, SONG Jin’ou, LIU Haifeng. Kinetic simulation of n-hexane pyrolysis reaction based on quantitative calculations [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4273-4282. |
[2] | GU Songqi, SUN Fanfei, WEI Yao, SONG Xingfei, NAN Bing, LI Lina, HUANG Yuying. Time-resolved thermochemical in-situ XAFS methodology [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3747-3755. |
[3] | XING Lei, MIAO Chunyu, JIANG Minghu, ZHAO Lixin, CAI Meng, LI Xinya. Analysis of flow field characteristics and performance of hydrocyclone in blocked conditions [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3776-3786. |
[4] | ZHANG Shiwei, LI Yuyu, MENG Lei, NING Xiang, SU Mingxu. Online measurement of particle size of high concentration slurry two-phase flows based on ultrasound method [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 593-601. |
[5] | LI Jing, FANG Qing, ZHOU Wenhao, WU Guoliang, WANG Jiahui, ZHANG Hua, NI Hongwei. Effect of baffle configuration on the multiphase flow behaviors of vanadium shale leaching tank [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 619-627. |
[6] | HU Zhihao, ZHANG Haojing, ZHOU Ye, WU Rui. Visualization observation of bubble behavior and performance impact analysis in efficient nickel based ordered porous electrodes [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 680-687. |
[7] | FU Feifei, LI Jian. Relationship and interaction between subsystems in gas-solid two-phase flow system of dense phase pneumatic conveying based on Empirical Mode Decomposition [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 696-702. |
[8] | LIU Haodong, ZHANG Pengfei, HUANG Yuqi. Visualization and velocity field test of thermal runaway jet of ternary lithium battery [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 703-712. |
[9] | YAN Zihan, WANG Dongdong, YIN Huimin, LIU Wenrui, LU Chunxi. Measuring and analysis methods for the mixing process of jet and gas-solid two-phase flow [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 713-721. |
[10] | BIAN Hanqing, ZHANG Xingkai, LIAO Ruiquan, WANG Dong, LI Rui, LUO Xiaochu, HOU Yaodong, BAI Xiaohong, GAN Qingming. Double-parameter measurement method of wet gas in phase-isolation state [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 722-733. |
[11] | SHENG Wen, YU Bo, GUO Han, ZHOU Huaichun. Liquid film thickness distribution detection based on transverse shear interferometry system [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 743-751. |
[12] | HA Wen, YANG Yang, TANG Yu, CAO Di, ZHANG Chao, YANG Bin. Ultrasonic attenuation method for measuring phase holdup in oil-water annular flow [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 768-780. |
[13] | XU Yi, LI Yi, MA Zhiyang, WANG Haigang. Dynamic signal analysis for gas-oil two-phase flow in time-frequency domain based on electrical capacitance tomography [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 855-864. |
[14] | XIE Guangshuo, ZHANG Siliang, HE Song, XIAO Juan, WANG Simin. Global sensitivity analysis for particulate fouling performance based on metamodel of optimal prognosis [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 328-337. |
[15] | SUN Jipeng, HAN Jing, TANG Yangchao, YAN Bowen, ZHANG Jieyao, XIAO Ping, WU Feng. Numerical simulation and optimization of operating parameters of sulfur wet molding process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 189-196. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |