Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (7): 3812-3823.DOI: 10.16085/j.issn.1000-6613.2023-0936
• Industrial catalysis • Previous Articles
GUO Peng1(), LI Hongwei1,2(), LI Guixian1,2, JI Dong1,2, WANG Dongliang1,2, ZHAO Xinhong1,2()
Received:
2023-06-07
Revised:
2023-07-11
Online:
2024-08-14
Published:
2024-07-10
Contact:
LI Hongwei, ZHAO Xinhong
郭鹏1(), 李红伟1,2(), 李贵贤1,2, 季东1,2, 王东亮1,2, 赵新红1,2()
通讯作者:
李红伟,赵新红
作者简介:
郭鹏(1997—),男,博士研究生,研究方向为低碳能源催化。E-mail:gpchem9299@163.com。
基金资助:
CLC Number:
GUO Peng, LI Hongwei, LI Guixian, JI Dong, WANG Dongliang, ZHAO Xinhong. Mechanisms and coping strategies on deactivation of anode catalysts for direct methanol fuel cells[J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3812-3823.
郭鹏, 李红伟, 李贵贤, 季东, 王东亮, 赵新红. 直接甲醇燃料电池阳极催化剂的失活机制及应对策略[J]. 化工进展, 2024, 43(7): 3812-3823.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0936
催化剂 | 制备方法 | 测试条件 | 稳定性 |
---|---|---|---|
Ce改性的Pt NPs/C[ | 乙二醇化学还原法 | 0.5mol/L H2SO4 + 1mol/L CH3OH | -0.2V下放电1000s后保持79.2%的初始活性 |
PtCo3@CNTs[ | g-C3N4辅助热合成法 | 0.5mol/L H2SO4 + 0.5mol/L CH3OH | 1500圈加速老化后保持87.3%的初始活性 |
Pd-P@Pt-Ni[ | 化学还原法 | 0.5mol/L H2SO4 + 0.5mol/L CH3OH | 500圈循环后ECSA降低2% |
Pd93Pt7[ | 一锅法 | 0.1mol/L NaOH + 0.5mol/LCH3OH | 500圈循环后保持86.5%的初始活性 |
Pt/TiO2-Nb-HSS[ | 硬模板法 | 0.5mol/L H2SO4 + 1mol/L CH3OH | 80℃循环200圈活性未发生明显下降 |
Pt-Au HNU[ | 种晶生长法 | 0.1mol/L HClO4 + 0.5mol/L CH3OH | 3000圈加速老化后ECSA降低25% |
PtCo CNCs[ | 水热合成法 | 0.5mol/L H2SO4 + 1mol/L CH3OH | 0.6V下放电8000s保持约25%的初始活性 |
PtSn/ATO[ | 化学还原法 | 0.5mol/L H2SO4 + 1mol/L CH3OH | 500圈加速老化后活性降低15% |
Pt3Co/CNTs-M[ | 化学还原法 | 0.5mol/L H2SO4 + 1mol/L CH3OH | 500圈循环后质量比活性下降20.9% |
PtRuCu[ | 电化学置换法 | 0.1mol/L HClO4 + 0.5mol/LCH3OH | 800圈循环后质量比活性下降27% |
Pt17Pd16Ru22Te45[ | 牺牲模板法 | 0.5mol/L H2SO4 + 1mol/L CH3OH | 1000圈加速老化后质量比活性下降2.75% |
催化剂 | 制备方法 | 测试条件 | 稳定性 |
---|---|---|---|
Ce改性的Pt NPs/C[ | 乙二醇化学还原法 | 0.5mol/L H2SO4 + 1mol/L CH3OH | -0.2V下放电1000s后保持79.2%的初始活性 |
PtCo3@CNTs[ | g-C3N4辅助热合成法 | 0.5mol/L H2SO4 + 0.5mol/L CH3OH | 1500圈加速老化后保持87.3%的初始活性 |
Pd-P@Pt-Ni[ | 化学还原法 | 0.5mol/L H2SO4 + 0.5mol/L CH3OH | 500圈循环后ECSA降低2% |
Pd93Pt7[ | 一锅法 | 0.1mol/L NaOH + 0.5mol/LCH3OH | 500圈循环后保持86.5%的初始活性 |
Pt/TiO2-Nb-HSS[ | 硬模板法 | 0.5mol/L H2SO4 + 1mol/L CH3OH | 80℃循环200圈活性未发生明显下降 |
Pt-Au HNU[ | 种晶生长法 | 0.1mol/L HClO4 + 0.5mol/L CH3OH | 3000圈加速老化后ECSA降低25% |
PtCo CNCs[ | 水热合成法 | 0.5mol/L H2SO4 + 1mol/L CH3OH | 0.6V下放电8000s保持约25%的初始活性 |
PtSn/ATO[ | 化学还原法 | 0.5mol/L H2SO4 + 1mol/L CH3OH | 500圈加速老化后活性降低15% |
Pt3Co/CNTs-M[ | 化学还原法 | 0.5mol/L H2SO4 + 1mol/L CH3OH | 500圈循环后质量比活性下降20.9% |
PtRuCu[ | 电化学置换法 | 0.1mol/L HClO4 + 0.5mol/LCH3OH | 800圈循环后质量比活性下降27% |
Pt17Pd16Ru22Te45[ | 牺牲模板法 | 0.5mol/L H2SO4 + 1mol/L CH3OH | 1000圈加速老化后质量比活性下降2.75% |
催化剂 | 制备方法 | 测试条件 | 抗中毒性 |
---|---|---|---|
Pt3Rh[ | 化学还原法 | 0.5mol/L H2SO4+0.5mol/L CH3OH | If/Ib=2.61 |
Au3Ag NFs[ | 一锅法 | 0.5mol/L KOH+2mol/L CH3OH | If/Ib=2.5 |
Pt1Ag3 DSNCs[ | 水热法 | 0.5mol/L H2SO4+0.5mol/L CH3OH | If/Ib=1.28 |
Pt/SiC[ | 化学还原法 | 0.5mol/L KOH+0.5mol/L CH3OH | If/Ib=1.48 |
催化剂 | 制备方法 | 测试条件 | 抗中毒性 |
---|---|---|---|
Pt3Rh[ | 化学还原法 | 0.5mol/L H2SO4+0.5mol/L CH3OH | If/Ib=2.61 |
Au3Ag NFs[ | 一锅法 | 0.5mol/L KOH+2mol/L CH3OH | If/Ib=2.5 |
Pt1Ag3 DSNCs[ | 水热法 | 0.5mol/L H2SO4+0.5mol/L CH3OH | If/Ib=1.28 |
Pt/SiC[ | 化学还原法 | 0.5mol/L KOH+0.5mol/L CH3OH | If/Ib=1.48 |
1 | KAKATI Nitul, MAITI Jatindranath, LEE Seok Hee, et al. Anode catalysts for direct methanol fuel cells in acidic media: Do we have any alternative for Pt or Pt-Ru?[J]. Chemical Reviews, 2014, 114(24): 12397-12429. |
2 | STEELE B C, HEINZEL A. Materials for fuel-cell technologies[J]. Nature, 2001, 414(6861): 345-352. |
3 | GREELEY J, STEPHENS I E L, BONDARENKO A S, et al. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts[J]. Nature Chemistry, 2009, 1(7): 552-556. |
4 | LUO Mingchuan, ZHAO Zhonglong, ZHANG Yelong, et al. PdMo bimetallene for oxygen reduction catalysis[J]. Nature, 2019, 574(7776): 81-85. |
5 | WAN Xin, LIU Xiaofang, LI Yongcheng, et al. Fe-N-C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells[J]. Nature Catalysis, 2019, 2: 259-268. |
6 | ZHOU Yuanyuan, XIE Zhenyang, JIANG Jinxia, et al. Lattice-confined Ru clusters with high CO tolerance and activity for the hydrogen oxidation reaction[J]. Nature Catalysis, 2020, 3: 454-462. |
7 | ZHU Jiexin, XIA Lixue, YU Ruohan, et al. Ultrahigh stable methanol oxidation enabled by a high hydroxyl concentration on Pt clusters/MXene interfaces[J]. Journal of the American Chemical Society, 2022, 144(34): 15529-15538. |
8 | NASSR Abu Bakr Ahmed Amine, SINEV Ilya, Wolfgang GRÜUNERT, et al. PtNi supported on oxygen functionalized carbon nanotubes: In depth structural characterization and activity for methanol electrooxidation[J]. Applied Catalysis B: Environmental, 2013, 142: 849-860. |
9 | ZHAO Haiqiang, QI Weihong, ZHOU Xinfeng, et al. Composition-controlled synthesis of platinum and palladium nanoalloys as highly active electrocatalysts for methanol oxidation[J]. Chinese Journal of Catalysis, 2018, 39(2): 342-349. |
10 | HU Gaofei, SHANG Liang, SHENG Tian, et al. PtCo@NCs with short heteroatom active site distance for enhanced catalytic properties[J]. Advanced Functional Materials, 2020, 30(28): 2002281. |
11 | GUPTA Divyani, CHAKRABORTY Sudip, AMORIM Rodrigo G, et al. Local electrocatalytic activity of PtRu supported on nitrogen-doped carbon nanotubes towards methanol oxidation by scanning electrochemical microscopy[J]. Journal of Materials Chemistry A, 2021, 9(37): 21291-21301. |
12 | ZHANG Zhicheng, LUO Zhimin, CHEN Bo, et al. One-pot synthesis of highly anisotropic five-fold-twinned PtCu nanoframes used as a bifunctional electrocatalyst for oxygen reduction and methanol oxidation[J]. Advanced Materials, 2016, 28(39): 8712-8717. |
13 | CAI Zuocheng, KAMIKO Masao, YAMADA Ikuya, et al. PtCo3 nanoparticle-encapsulated carbon nanotubes as active catalysts for methanol fuel cell anodes[J]. ACS Applied Nano Materials, 2021, 4(2): 1445-1454. |
14 | LI Guoxing, LI Yuliang, LIU Huibiao, et al. Architecture of graphdiyne nanoscale films[J]. Chemical Communications, 2010, 46(19): 3256-3258. |
15 | HUI Lan, XUE Yurui, XING Chengyu, et al. Highly loaded independent Pt0 atoms on graphdiyne for pH-general methanol oxidation reaction[J]. Advanced Science, 2022, 9(16): e2104991. |
16 | ZHANG Zhiqi, LIU Jiapeng, WANG Jian, et al. Single-atom catalyst for high-performance methanol oxidation[J]. Nature Communications, 2021, 12(1): 5235. |
17 | MARTÍN Antonio J, MITCHELL Sharon, MONDELLI Cecilia, et al. Unifying views on catalyst deactivation[J]. Nature Catalysis, 2022, 5: 854-866. |
18 | MOULIJN J A, VAN DIEPEN A E, KAPTEIJN F. Catalyst deactivation: Is it predictable?[J]. Applied Catalysis A: General, 2001, 212(1/2): 3-16. |
19 | XIA Zhangxun, ZHANG Xiaoming, SUN Hai, et al. Recent advances in multi-scale design and construction of materials for direct methanol fuel cells[J]. Nano Energy, 2019, 65: 104048. |
20 | TIWARI Jitendra N, TIWARI Rajanish N, SINGH Gyan, et al. Recent progress in the development of anode and cathode catalysts for direct methanol fuel cells[J]. Nano Energy, 2013, 2(5): 553-578. |
21 | HAMNETT A. Mechanism and electrocatalysis in the direct methanol fuel cell[J]. Catalysis Today, 1997, 38(4): 445-457. |
22 | WANG Jianmei, ZHANG Bingxing, GUO Wei, et al. Toward electrocatalytic methanol oxidation reaction: Longstanding debates and emerging catalysts[J]. Advanced Materials, 2023, 35(26): e2211099. |
23 | LIU Hansan, SONG Chaojie, ZHANG Lei, et al. A review of anode catalysis in the direct methanol fuel cell[J]. Journal of Power Sources, 2006, 155(2): 95-110. |
24 | YU Eileen Hao, KREWER Ulrike, SCOTT Keith. Principles and materials aspects of direct alkaline alcohol fuel cells[J]. Energies, 2010, 3(8): 1499-1528. |
25 | GOODMAN Emmett D, SCHWALBE Jay A, CARGNELLO Matteo. Mechanistic understanding and the rational design of sinter-resistant heterogeneous catalysts[J]. ACS Catalysis, 2017, 7(10): 7156-7173. |
26 | HANSEN Thomas W, DELARIVA Andrew T, CHALLA Sivakumar R, et al. Sintering of catalytic nanoparticles: Particle migration or Ostwald ripening?[J]. Accounts of Chemical Research, 2013, 46(8): 1720-1730. |
27 | WANG Lingxiang, WANG Liang, MENG Xiangju, et al. New strategies for the preparation of sinter-resistant metal-nanoparticle-based catalysts[J]. Advanced Materials, 2019, 31(50): e1901905. |
28 | CHEN Ligang, LIANG Xin, LI Xiaotong, et al. Promoting electrocatalytic methanol oxidation of platinum nanoparticles by cerium modification[J]. Nano Energy, 2020, 73: 104784. |
29 | YANG Chenglong, WANG Lina, YIN Peng, et al. Sulfur-anchoring synthesis of platinum intermetallic nanoparticle catalysts for fuel cells[J]. Science, 2021, 374(6566): 459-464. |
30 | YOO Ji Mun, SHIN Heejong, CHUNG Dong Young, et al. Carbon shell on active nanocatalyst for stable electrocatalysis[J]. Accounts of Chemical Research, 2022, 55(9): 1278-1289. |
31 | TONG Yueyu, YAN Xiao, LIANG Ji, et al. Metal-based electrocatalysts for methanol electro-oxidation: Progress, opportunities, and challenges[J]. Small, 2021, 17(9): e1904126. |
32 | LI Ziwei, LI Min, BIAN Zhoufeng, et al. Design of highly stable and selective core/yolk-shell nanocatalysts—A review[J]. Applied Catalysis B: Environmental, 2016, 188: 324-341. |
33 | GUO Jiangbin, ZHANG Man, XU Jing, et al. Core-shell Pd-P@Pt-Ni nanoparticles with enhanced activity and durability as anode electrocatalyst for methanol oxidation reaction[J]. RSC Advances, 2022, 12(4): 2246-2252. |
34 | ZHANG Ying, BU Lingzheng, JIANG Kezhu, et al. Concave Pd-Pt core-shell nanocrystals with ultrathin Pt shell feature and enhanced catalytic performance[J]. Small, 2016, 12(6): 706-712. |
35 | REN Bingzhi, LU Jianwei, WANG Yucheng, et al. Half-sphere shell supported Pt catalyst for electrochemical methanol oxidation[J]. Journal of the Electrochemical Society, 2020, 167(8): 084510. |
36 | MA Siyue, LI Huihui, HU Bicheng, et al. Synthesis of low Pt-based quaternary PtPdRuTe nanotubes with optimized incorporation of Pd for enhanced electrocatalytic activity[J]. Journal of the American Chemical Society, 2017, 139(16): 5890-5895. |
37 | YOU Hongjun, ZHANG Fangling, LIU Zhen, et al. Free-standing Pt-Au hollow nanourchins with enhanced activity and stability for catalytic methanol oxidation[J]. ACS Catalysis, 2014, 4(9): 2829-2835. |
38 | LI Zhijuan, JIANG Xian, WANG Xiaoru, et al. Concave PtCo nanocrosses for methanol oxidation reaction[J]. Applied Catalysis B: Environmental, 2020, 277: 119135. |
39 | CHEN Wei, LEI Zhao, ZENG Tang, et al. Structurally ordered PtSn intermetallic nanoparticles supported on ATO for efficient methanol oxidation reaction[J]. Nanoscale, 2019, 11(42): 19895-19902. |
40 | LI Yanru, LI Hongwei, LI Guixian, et al. Low-temperature N-anchored ordered Pt3Co intermetallic nanoparticles as electrocatalysts for methanol oxidation reaction[J]. Nanoscale, 2022, 14(38): 14199-14211. |
41 | XUE Shengfeng, DENG Wentao, YANG Fang, et al. Hexapod PtRuCu nanocrystalline alloy for highly efficient and stable methanol oxidation[J]. ACS Catalysis, 2018, 8(8): 7578-7584. |
42 | GOODMAN Emmett D, ASUNDI Arun S, HOFFMAN Adam S, et al. Monolayer support control and precise colloidal nanocrystals demonstrate metal-support interactions in heterogeneous catalysts[J]. Advanced Materials, 2021, 33(44): e2104533. |
43 | SHEN Shancheng, XU Shilong, ZHAO Shuai, et al. Synthesis of carbon-metal oxide composites as catalyst supports by “cooking sugar with salt”[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(2): 731-737. |
44 | HUANG Michael H, CHIU Chun-Ya. Achieving polyhedral nanocrystal growth with systematic shape control[J]. Journal of Materials Chemistry A, 2013, 1(28): 8081-8092. |
45 | NARESH N, WASIM F G S, LADEWIG B P, et al. Removal of surfactant and capping agent from Pd nanocubes (Pd-NCs) using tert-butylamine: Its effect on electrochemical characteristics[J]. Journal of Materials Chemistry A, 2013, 1(30): 8553-8559. |
46 | H-P DHAR, L-G CHRISTNER, A-K KUSH, et al. Performance study of a fuel cell Pt-on-C anode in presence of CO and CO2, and calculation of adsorption parameters for CO poisoning[J]. Journal of The Electrochemical Society, 1986, 133(8): 1574. |
47 | MANCHARAN Ramasamy, GOODENOUGH John B. Methanol oxidation in acid on ordered NiTi[J]. Journal of Materials Chemistry, 1992, 2(8): 875-887. |
48 | ZHANG Y, SHU G Q, SHANG Z T, et al. Electronic and cooridination effect of PtPd nanoflower alloys for the methanol electrooxidation reaction[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(24): 8958-8967. |
49 | LIN Shawn D, HSIAO Ting-Chou, CHANG Jen-Ray, et al. Morphology of carbon supported Pt-Ru electrocatalyst and the CO tolerance of anodes for PEM fuel cells[J]. The Journal of Physical Chemistry B, 1999, 103(1): 97-103. |
50 | WATANABE M. Electrocatalysis by ad-atoms: Part Ⅲ. Enhancement of the oxidation of carbon monoxide on platinum by ruthenium ad-atoms[J]. Journal of Electroanalytical Chemistry, 1975, 60(3): 275-283. |
51 | WATANABE Masahiro, UCHIDA Makoto, MOTOO Satoshi. Preparation of highly dispersed Pt + Ru alloy clusters and the activity for the electrooxidation of methanol[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1987, 229(1/2): 395-406. |
52 | NARAYANAMOORTHY Bhuvanendran, DATTA Kasibhatta Kumara Ramanatha, ESWARAMOORTHY Muthusamy, et al. Highly active and stable Pt3Rh nanoclusters as supportless electrocatalyst for methanol oxidation in direct methanol fuel cells[J]. ACS Catalysis, 2014, 4(10): 3621-3629. |
53 | XIONG Likun, SUN Zhongti, ZHANG Xiang, et al. Octahedral gold-silver nanoframes with rich crystalline defects for efficient methanol oxidation manifesting a CO-promoting effect[J]. Nature Communications, 2019, 10(1): 3782. |
54 | YAO Wenqing, JIANG Xian, LI Meng, et al. Engineering hollow porous platinum-silver double-shelled nanocages for efficient electro-oxidation of methanol[J]. Applied Catalysis B: Environmental, 2021, 282: 119595. |
55 | BAI Gailing, LIU Chang, GAO Zhe, et al. Atomic carbon layers supported Pt nanoparticles for minimized CO poisoning and maximized methanol oxidation[J]. Small, 2019, 15(38): e1902951. |
56 | GUO Lin, CHEN Siguo, LI Li, et al. A CO-tolerant PtRu catalyst supported on thiol-functionalized carbon nanotubes for the methanol oxidation reaction[J]. Journal of Power Sources, 2014, 247: 360-364. |
57 | QU Yongfang, ZHANG Wei, GUANG Binxiong, et al. Poly(ionic liquids) derived N, S co-doped carbon nanorod from in situ and template-free method as an efficient metal-free bifunctional electrocatalysts for direct methanol fuel cells[J]. Journal of Alloys and Compounds, 2022, 912: 165261. |
58 | BARAKAT Nasser A-M, MOTLAK Moaaed. Co x Ni y -decorated graphene as novel, stable and super effective non-precious electro-catalyst for methanol oxidation[J]. Applied Catalysis B: Environmental, 2014, 154: 221-231. |
59 | EASTWOOD B J, CHRISTENSEN P A, ARMSTRONG R D, et al. Electrochemical oxidation of a carbon black loaded polymer electrode in aqueous electrolytes[J]. Journal of Solid State Electrochemistry, 1999, 3(4): 179-186. |
60 | MAYRHOFER Karl J J, MEIER Josef C, ASHTON Sean J, et al. Fuel cell catalyst degradation on the nanoscale[J]. Electrochemistry Communications, 2008, 10(8): 1144-1147. |
61 | MAYRHOFER Karl J-J, ASHTON Sean J, MEIER Josef C, et al. Non-destructive transmission electron microscopy study of catalyst degradation under electrochemical treatment[J]. Journal of Power Sources, 2008, 185(2): 734-739. |
62 | SIROMA Zyun, ISHII Kenta, YASUDA Kazuaki, et al. Imaging of highly oriented pyrolytic graphite corrosion accelerated by Pt particles[J]. Electrochemistry Communications, 2005, 7(11): 1153-1156. |
63 | STONEHART P. Carbon substrates for phosphoric acid fuel cell cathodes[J]. Carbon, 1984, 22(4/5): 423-431. |
64 | CHEN Siguo, WEI Zidong, GUO Lin, et al. Enhanced dispersion and durability of Pt nanoparticles on a thiolated CNT support[J]. Chemical Communications, 2011, 47(39): 10984-10986. |
65 | LI L, CHEN S G, WEI Z D, et al. Experimental and DFT study of thiol-stabilized Pt/CNTs catalysts[J]. Physical Chemistry Chemical Physics: PCCP, 2012, 14(48): 16581-16587. |
66 | SUN Yongrong, DU Chunyu, HAN Guokang, et al. Boron, nitrogen co-doped graphene: A superior electrocatalyst support and enhancing mechanism for methanol electrooxidation[J]. Electrochimica Acta, 2016, 212: 313-321. |
67 | AN Meichen, DU Lei, DU Chunyu, et al. Pt nanoparticles supported by sulfur and phosphorus co-doped graphene as highly active catalyst for acidic methanol electrooxidation[J]. Electrochimica Acta, 2018, 285: 202-213. |
68 | HUANG Shengyang, GANESAN Prabhu, PARK Sehkyu, et al. Development of a titanium dioxide-supported platinum catalyst with ultrahigh stability for polymer electrolyte membrane fuel cell applications[J]. Journal of the American Chemical Society, 2009, 131(39): 13898-13899. |
69 | ABDULLAH M, KAMARUDIN S K, SHYUAN L K. TiO2 nanotube-carbon (TNT-C) as support for Pt-based catalyst for high methanol oxidation reaction in direct methanol fuel cell[J]. Nanoscale Research Letters, 2016, 11(1): 553. |
70 | ZHANG Dafeng, ZHANG Cuisong, CHEN Yumei, et al. Support shape effect on the catalytic performance of Pt/CeO2 nanostructures for methanol electrooxidation[J]. Electrochimica Acta, 2014, 139: 42-47. |
71 | DAS S, DUTTA K, KUNDU P P, et al. Nanostructured polyaniline: An efficient support matrix for platinum-ruthenium anode catalyst in direct methanol fuel cell[J]. Fuel Cells, 2018, 18(4): 369-378. |
72 | TINTULA K K, PITCHUMANI S, SRIDHAR P, et al. A solid-polymer-electrolyte direct methanol fuel cell (DMFC) with Pt-Ru nanoparticles supported onto poly(3,4-ethylenedioxythiophene) and polystyrene sulphonic acid polymer composite as anode[J]. Journal of Chemical Sciences, 2010, 122(3): 381-389. |
73 | ÇELEBI M S. Energy applications: Fuel cells[M]//Advanced Electrode Materials (Edited by TIWARI A, KURALAY F, UZUN L), Weinheim: Wiley-VCH, 2016: 397-434. |
74 | HUANG Kan, SASAKI Kotaro, ADZIC Radoslav R, et al. Increasing Pt oxygen reduction reaction activity and durability with a carbon-doped TiO2 nanocoating catalyst support[J]. Journal of Materials Chemistry, 2012, 22(33): 16824-16832. |
75 | XIA Bao yu, WANG Bao, WU Hao bin, et al. Sandwich-structured TiO2-Pt-graphene ternary hybrid electrocatalysts with high efficiency and stability[J]. Journal of Materials Chemistry, 2012, 22(32): 16499-16505. |
76 | HAO Yanfei, WANG Xudan, ZHENG Yuanyuan, et al. Uniform Pt nanoparticles incorporated into reduced graphene oxides with MoO3 as advanced anode catalysts for methanol electro-oxidation[J]. Electrochimica Acta, 2016, 198: 127-134. |
77 | AJENIFUJAH Olabode T, NOURALISHAHI Amideddin, CARL Sarah, et al. Platinum supported on early transition metal carbides: Efficient electrocatalysts for methanol electro-oxidation reaction in alkaline electrolyte[J]. Chemical Engineering Journal, 2021, 406: 126670. |
[1] | FANG Yao, LIU Lei, GAO Zhihua, HUANG Wei, ZUO Zhijun. Advances in anode catalysts for photo-assisted direct methanol fuel cells [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2611-2628. |
[2] | DING Xin, ZHANG Dongming, JIAO Weizhou, LIU Youzhi. Research progress of anode catalysts for direct methanol fuel cells [J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4918-4930. |
[3] | Dongxing ZHEN, Shuai TANG, Musen CHEN, Lei WAN, Xuemei WU, Gaohong HE. Preparation and fuel cell performance of sulfated SnO2/SPPESK composite proton exchange membranes [J]. Chemical Industry and Engineering Progress, 2019, 38(01): 529-537. |
[4] | ZHANG Feixiang,QI Liang,YAO Kejian. Experimental and numerical simulation study on bubble behavior in passive DMFC [J]. Chemical Industry and Engineering Progree, 2013, 32(02): 283-289. |
[5] | HE Jianfeng,ZHANG Yuanchang,ZHU Juxiang,YAO Kejian. Experimental investigation on bubble behavior in anode channel of DMFC [J]. Chemical Industry and Engineering Progree, 2010, 29(5): 831-. |
[6] | YANG Wei1,CHEN Shengzhou2,ZOU Hanbo2,LIN Weiming1,2. Progress in nitrogen-doped non-noble catalysts for oxygen reduction [J]. Chemical Industry and Engineering Progree, 2010, 29(11): 2085-. |
[7] |
YE Dingding,LI Jun,ZHU Xun,LIAO Qiang,HUANG Guilan,FU Qian.
Performance and mass transfer characteristics of an air-breathing DMFC [J]. Chemical Industry and Engineering Progree, 2009, 28(6): 948-. |
[8] | ZHANG Xiaohua,ZHONG Qin. Preparation and characterization of La0.7Sr0.3Cr1-xFexO3-δ anode catalyst with sulfur tolerance for SOFC [J]. Chemical Industry and Engineering Progree, 2009, 28(5): 788-. |
[9] | JU Jianfeng,WU Donghui. Development of anode catalysts for direct methanol fuel cell [J]. Chemical Industry and Engineering Progree, 2009, 28(4): 646-. |
[10] | LIAO Qiang,ZHU Xiaowei,ZHU Xun,YE Dingding,DING Yudong. Progress of visualization of proton exchange membrane fuel cell (PEMFC) [J]. Chemical Industry and Engineering Progree, 2007, 26(9): 1213-. |
[11] | JIN Hao;XIE Xiaofeng;SHANG Yuming;FENG Shaoguang;LÜ Yafei. Research progress of organic-inorganic hybrid proton exchange membranes for DMFC applications [J]. Chemical Industry and Engineering Progree, 2007, 26(4): 507-. |
[12] | ZHANG Ying,YIN Yuji,YAO Kangde. Research progress of methanol-preventing proton exchange membranes for direct methanol fuel cells [J]. Chemical Industry and Engineering Progree, 2007, 26(4): 501-. |
[13] |
WANG Shubo,WANG Yaowu,XIE Xiaofeng, WANG Hao ,YAN Hui.
Progress in anode catalysts and preparation techniques for direct methanol fuel cells [J]. Chemical Industry and Engineering Progree, 2006, 25(6): 658-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |