Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (7): 3812-3823.DOI: 10.16085/j.issn.1000-6613.2023-0936

• Industrial catalysis • Previous Articles    

Mechanisms and coping strategies on deactivation of anode catalysts for direct methanol fuel cells

GUO Peng1(), LI Hongwei1,2(), LI Guixian1,2, JI Dong1,2, WANG Dongliang1,2, ZHAO Xinhong1,2()   

  1. 1.College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu, China
    2.Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou 730050, Gansu, China
  • Received:2023-06-07 Revised:2023-07-11 Online:2024-08-14 Published:2024-07-10
  • Contact: LI Hongwei, ZHAO Xinhong

直接甲醇燃料电池阳极催化剂的失活机制及应对策略

郭鹏1(), 李红伟1,2(), 李贵贤1,2, 季东1,2, 王东亮1,2, 赵新红1,2()   

  1. 1.兰州理工大学石油化工学院,甘肃 兰州 730050
    2.甘肃省低碳能源化工重点实验室,甘肃 兰州 730050
  • 通讯作者: 李红伟,赵新红
  • 作者简介:郭鹏(1997—),男,博士研究生,研究方向为低碳能源催化。E-mail:gpchem9299@163.com
  • 基金资助:
    甘肃省基础研究创新群体项目(22JR5RA219)

Abstract:

Among many factors determining the performance and cost of direct methanol fuel cells(DMFC), methanol oxidation electrocatalyst is the most crucial one. At present, platinum-based catalysts are considered to be the most promising and efficient for methanol oxidation reaction. However, during the reaction process, there are deactivation problems caused by the agglomeration and leaching of active sites, poor anti-CO toxicity, and the corrosion and collapse of the support, which hinder the commercialization of DMFC. How to improve the stability of anode catalyst for DMFC is an urgent problem to be solved. Firstly, the principle and catalytic mechanism of methanol electrooxidation are summarized in this review. Then, the deactivation mechanisms of anode catalysts were reviewed in detail, and the effective methods to solve the deactivation issues were discussed. Finally, it was pointed out that using the confinement to restrict metal migration and aggregation, the construction of multi-alloy, the design of composite support, and combining the theoretical research with the insitu characterization technique, which were the main research directions of the development of higher and more stable anode catalysts in the future.

Key words: direct methanol fuel cell, anode catalyst, inactivation mechanism, migration agglomeration and leaching of metal particles, support corrosion and collapse

摘要:

甲醇氧化电催化剂是决定直接甲醇燃料电池(direct methanol fuel cells,DMFC)性能与成本的关键。目前,铂基催化剂是最有前途的高效甲醇氧化电催化剂,但在反应过程中存在活性位的迁移、团聚与浸出、中毒以及载体的腐蚀与坍塌等原因引起的失活问题,阻碍了其进一步商业化发展。如何提高直接甲醇燃料电池阳极催化剂的稳定性是一个亟待解决的难题。本文首先总结了甲醇的电氧化原理和催化反应机理,详细综述了阳极催化剂的失活机制以及抑制改善其失活方面所取得的研究进展。最后对该领域未来的发展方向进行了展望,并指出利用限域作用限制活性金属的迁移和聚集,构建多元合金,设计增强复合型载体,将理论研究和原位表征技术相结合,是今后开发更高效、稳定阳极催化剂的重点研究方向。

关键词: 直接甲醇燃料电池, 阳极催化剂, 失活机制, 金属粒子的迁移、团聚与浸出, 载体腐蚀与坍塌

CLC Number: 

京ICP备12046843号-2;京公网安备 11010102001994号
Copyright © Chemical Industry and Engineering Progress, All Rights Reserved.
E-mail: hgjz@cip.com.cn
Powered by Beijing Magtech Co. Ltd