1 |
陈娅君, 龙威, 何永清, 等. 液-液多相流微萃取的数值模拟和实验分析[J]. 化工进展, 2019, 38(5): 2085-2092.
|
|
CHEN Yajun, LONG Wei, HE Yongqing, et al. Numerical simulation and experimental analysis of liquid-liquid multiphase microextraction[J]. Chemical Industry and Engineering Progress, 2019, 38(5): 2085-2092.
|
2 |
TARN M D, LOPEZ-MARTINEZ M J, PAMME N. On-chip processing of particles and cells via multilaminar flow streams[J]. Analytical and Bioanalytical Chemistry, 2014, 406(1): 139-161.
|
3 |
LEE Sang Wook, YAMAMOTO T, NOJI H, et al. Chemical delivery microsystem for single-molecule analysis using multilaminar continuous flow[J]. Enzyme and Microbial Technology, 2006, 39(3): 519-525.
|
4 |
田启凯, 郑海萍, 张少斌, 等. 混合增强的微流控通道进展[J]. 化工进展, 2023, 42(4): 1677-1687.
|
|
TIAN Qikai, ZHENG Haiping, ZHANG Shaobin, et al. Advances in mixing enhanced microfluidic channels[J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1677-1687.
|
5 |
ALORABI A Q, TARN M D, GÓMEZ-PASTORA J, et al. On-chip polyelectrolyte coating onto magnetic droplets-Towards continuous flow assembly of drug delivery capsules[J]. Lab on a Chip, 2017, 17(22): 3785-3795.
|
6 |
TARN M D, PAMME N. On-chip magnetic particle-based immunoassays using multilaminar flow for clinical diagnostics[M]// Microchip Diagnostics. New York: Humana Press, 2017: 69-83.
|
7 |
CAPRETTO L, CHENG Wei, HILL M, et al. Micromixing within microfluidic devices[J]. Topics in Current Chemistry, 2011(304): 27-68.
|
8 |
GÓMEZ-PASTORA J, GONZÁLEZ-FERNÁNDEZ C, FALLANZA M, et al. Flow patterns and mass transfer performance of miscible liquid-liquid flows in various microchannels: Numerical and experimental studies[J]. Chemical Engineering Journal, 2018, 344: 487-497.
|
9 |
ZHAO Wujun, CHENG Rui, So Hyun LIM, et al. Biocompatible and label-free separation of cancer cells from cell culture lines from white blood cells in ferrofluids[J]. Lab on a Chip, 2017, 17(13): 2243-2255.
|
10 |
HUANG Wei, WANG Xiaolei. Ferrofluids lubrication: A status report[J]. Lubrication Science, 2016, 28(1): 3-26.
|
11 |
TORRES-DÍAZ I, RINALDI C. Recent progress in ferrofluids research: Novel applications of magnetically controllable and tunable fluids[J]. Soft Matter, 2014, 10(43): 8584-8602.
|
12 |
JIAO Feng, LI Qian, HE Yongqing. Electromotive force induced by the moving non-magnetic phase in ferrofluids[J]. Sensors and Actuators A: Physical, 2021, 317: 112472.
|
13 |
JIAO Feng, LI Qian, JIAO Yanying, et al. Heat transfer of ferrofluids with magnetoviscous effects[J]. Journal of Molecular Liquids, 2021, 328: 115404.
|
14 |
汪伟, 苏瑶瑶, 刘壮, 等. 微流控法可控构建微尺度功能材料[J]. 化工进展, 2019, 38(1): 421-433.
|
|
WANG Wei, SU Yaoyao, LIU Zhuang, et al. Controllable microfluidic fabrication of microscale functional materials[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 421-433.
|
15 |
陈宏霞, 肖红洋, 孙源, 等. 不同T型微通道内弹状流相分离规律的实验研究[J]. 高校化学工程学报, 2020, 34(4): 912-918.
|
|
CHEN Hongxia, XIAO Hongyang, SUN Yuan, et al. Experimental study on phase separation of slug flow in different T-type microchannels[J]. Journal of Chemical Engineering of Chinese Universities, 2020, 34(4): 912-918.
|
16 |
刘浪宇, 朱春英, 马友光, 等. 微通道内表面活性剂与界面传递现象研究进展[J]. 化工学报, 2021, 72(2): 783-798.
|
|
LIU Langyu, ZHU Chunying, MA Youguang, et al. Progress on surfactant and interfacial transport phenomena in microchannels[J]. CIESC Journal, 2021, 72(2): 783-798.
|
17 |
钱锦远, 李晓娟, 吴赞, 等. 微通道内液-液两相流流型及传质的研究进展[J]. 化工进展, 2019, 38(4): 1624-1633.
|
|
QIAN Jinyuan, LI Xiaojuan, WU Zan, et al. Research progress on flow regimes and mass transfer of liquid-liquid two-phase flow in microchannels[J]. Chemical Industry and Engineering Progress, 2019, 38(4): 1624-1633.
|
18 |
SOTOWA K. Fluid behavior and mass transport characteristics of gas-liquid and liquid-liquid flows in microchannels[J]. Journal of Chemical Engineering of Japan, 2014, 47(3): 213-224.
|
19 |
ZHOU Ran, WANG Cheng. Multiphase ferrofluid flows for micro-particle focusing and separation[J]. Biomicrofluidics, 2016, 10(3): 034101.
|
20 |
ZHAO Bin, VIERNES N O L, MOORE J S, et al. Control and applications of immiscible liquids in microchannels[J]. Journal of the American Chemical Society, 2002, 124(19): 5284-5285.
|
21 |
HIBARA A, NONAKA M, HISAMOTO H, et al. Stabilization of liquid interface and control of two-phase confluence and separation in glass microchips by utilizing octadecylsilane modification of microchannels[J]. Analytical Chemistry, 2002, 74(7): 1724-1728.
|
22 |
ATENCIA J, BEEBE D J. Controlled microfluidic interfaces[J]. Nature, 2005, 437(7059): 648-655.
|
23 |
ÍM COUTINHO, MIRANDA J A. Development of magnetoelastic fingering patterns in a rectangular Hele-Shaw cell[J]. Physical Review Fluids, 2020, 5(9): 094002.
|
24 |
YECKO P. Effect of normal and parallel magnetic fields on the stability of interfacial flows of magnetic fluids in channels[J]. Physics of Fluids, 2010, 22(2): 022103.
|
25 |
MALEKI M A, ZHANG Jun, KASHANINEJAD N, et al. Magnetofluidic spreading in circular chambers under a uniform magnetic field[J]. Microfluidics and Nanofluidics, 2020, 24(10): 80.
|
26 |
ZHAO Wujun, CHENG Rui, MILLER J R, et al. Label-free microfluidic manipulation of particles and cells in magnetic liquids[J]. Advanced Functional Materials, 2016, 26(22): 3916-3932.
|
27 |
THANJAVUR KUMAR D, ZHOU Yilong, BROWN V, et al. Electric field-induced instabilities in ferrofluid microflows[J]. Microfluidics and Nanofluidics, 2015, 19(1): 43-52.
|
28 |
WANG Zhaomeng, VARMA V B, XIA Huanming, et al. Spreading of a ferrofluid core in three-stream micromixer channels[J]. Physics of Fluids, 2015, 27(5): 052004.
|
29 |
CUBAUD T, MASON T G. Formation of miscible fluid microstructures by hydrodynamic focusing in plane geometries[J]. Physical Review E, 2008, 78(5): 056308.
|