Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (7): 3729-3746.DOI: 10.16085/j.issn.1000-6613.2023-2277
• Column: Thermochemical Reaction Engineering Technology • Previous Articles
CHEN Liang1(), LUO Dongmei1, WANG Zhenghao1, ZHONG Shan1, TANG Siyang1, LIANG Bin1,2()
Received:
2023-12-27
Revised:
2024-03-25
Online:
2024-08-14
Published:
2024-07-10
Contact:
LIANG Bin
陈良1(), 罗冬梅1, 王正豪1, 钟山1, 唐思扬1, 梁斌1,2()
通讯作者:
梁斌
作者简介:
陈良(1996—),男,博士研究生,研究方向为化学链制氢。E-mail:1573496497@qq.com。
基金资助:
CLC Number:
CHEN Liang, LUO Dongmei, WANG Zhenghao, ZHONG Shan, TANG Siyang, LIANG Bin. Research progress of industrial by-product gas-fueled chemical looping hydrogen generation technology[J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3729-3746.
陈良, 罗冬梅, 王正豪, 钟山, 唐思扬, 梁斌. 工业副产气化学链回收氢气技术研究进展[J]. 化工进展, 2024, 43(7): 3729-3746.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-2277
类型 | H2/% | CO/% | CH4/% | N2/% | CO2/% | 其他 /% | 年产量 /108·m-3 |
---|---|---|---|---|---|---|---|
焦炉煤气 | 54~59 | 5~8 | 23~27 | 3~6 | 2~4 | 2~3 | 1114 [ |
高炉煤气 | 1~2 | 28~33 | 0.2~0.5 | 55~60 | 6~12 | — | 18000 [ |
甲醇驰放气 | 60~75 | 5~7 | 5~11 | 0.5~2 | 2~13 | — | 239 [ |
氯碱尾气 | 92 | — | — | — | — | 8 | 5.27 [ |
醋酸尾气 | 5~15 | 60~85 | 1~3 | 4~7 | 6~15 | — | 7.20 [ |
类型 | H2/% | CO/% | CH4/% | N2/% | CO2/% | 其他 /% | 年产量 /108·m-3 |
---|---|---|---|---|---|---|---|
焦炉煤气 | 54~59 | 5~8 | 23~27 | 3~6 | 2~4 | 2~3 | 1114 [ |
高炉煤气 | 1~2 | 28~33 | 0.2~0.5 | 55~60 | 6~12 | — | 18000 [ |
甲醇驰放气 | 60~75 | 5~7 | 5~11 | 0.5~2 | 2~13 | — | 239 [ |
氯碱尾气 | 92 | — | — | — | — | 8 | 5.27 [ |
醋酸尾气 | 5~15 | 60~85 | 1~3 | 4~7 | 6~15 | — | 7.20 [ |
因素 | 化学链制氢 (载氧体:Fe2O3/MgAl2O4) | 化学链制氢 (载氧体:Fe2O3/ZrO2) | 甲烷蒸汽重整 |
---|---|---|---|
总投资/×106USD | 369.6 | 369.6 | 678.1 |
总运行成本/×106USD | 246.5 | 289 | 207.7 |
年产氢量/Mt | 0.24 | 0.24 | 0.24 |
利率/% | 10 | 10 | 10 |
寿命/年 | 25 | 25 | 25 |
年生产成本/×106USD | 287.2 | 329.7 | 332.7 |
H2生产成本/USD·kg-1 | 1.41 | 1.62 | 1.64 |
因素 | 化学链制氢 (载氧体:Fe2O3/MgAl2O4) | 化学链制氢 (载氧体:Fe2O3/ZrO2) | 甲烷蒸汽重整 |
---|---|---|---|
总投资/×106USD | 369.6 | 369.6 | 678.1 |
总运行成本/×106USD | 246.5 | 289 | 207.7 |
年产氢量/Mt | 0.24 | 0.24 | 0.24 |
利率/% | 10 | 10 | 10 |
寿命/年 | 25 | 25 | 25 |
年生产成本/×106USD | 287.2 | 329.7 | 332.7 |
H2生产成本/USD·kg-1 | 1.41 | 1.62 | 1.64 |
85 | CAO Zhihe, MA Baozhong, ZHOU Jiashun, et al. The study for reduction roasting of laterite residue in the presence of CaF2 [J]. Process Safety and Environmental Protection, 2022, 168: 1-9. |
86 | MA Jinchen, HUANG Haodong, ZHENG Chaohe, et al. Identification of HCl corrosion mechanism on Cu-based oxygen carriers in chemical looping combustion[J]. Fuel, 2024, 359: 130373. |
87 | HUANG Haodong, MA Jinchen, ZHAO Haibo, et al. Behavior of coal-chlorine in chemical looping combustion[J]. Proceedings of the Combustion Institute, 2023, 39(4): 4437-4446. |
88 | KUMAR Sonu, MOHAPATRA Pinak, JOSHI Rushikesh K, et al. Synergistic chemical looping process coupling natural gas conversion and NO x purification[J]. Energy & Fuels, 2023, 37(10): 7268-7279. |
89 | MAYRHUBER Stefan, NORMANN Fredrik, YILMAZ Duygu, et al. Effect of the oxygen carrier ilmenite on NO x formation in chemical-looping combustion[J]. Fuel Processing Technology, 2021, 222: 106962. |
90 | HU Donghai, CAO Guoqiang, DU Meijie, et al. Insight into the biomass pyrolysis volatiles reaction with an iron-based oxygen carrier in a two-stage fixed-bed reactor[J]. Chemical Engineering Journal, 2023, 465: 142860. |
91 | ZENG Jimin, HU Jiawei, QIU Yu, et al. Multi-function of oxygen carrier for in-situ tar removal in chemical looping gasification: Naphthalene as a model compound[J]. Applied Energy, 2019, 253: 113502. |
92 | ZHEN Huang, WANG Yonghao, FANG Shiwen, et al. Chemical looping gasification of benzene as a biomass tar model compound using hematite modified by Ni as an oxygen carrier[J]. Applications in Energy and Combustion Science, 2023, 15: 100172. |
93 | Hyungseok NAM, WANG Zhouhong, SHANMUGAM Saravanan R, et al. Chemical looping dry reforming of benzene as a gasification tar model compound with Ni- and Fe-based oxygen carriers in a fluidized bed reactor[J]. International Journal of Hydrogen Energy, 2018, 43(41): 18790-18 800. |
94 | SVOBODA K, SLOWINSKI G, ROGUT J, et al. Thermodynamic possibilities and constraints for pure hydrogen production by iron based chemical looping process at lower temperatures[J]. Energy Conversion and Management, 2007, 48(12): 3063-3073. |
95 | DAS S, BISWAS A, TIWARY C S, et al. Hydrogen production using chemical looping technology: A review with emphasis on H2 yield of various oxygen carriers[J]. International Journal of Hydrogen Energy, 2022, 47(66): 2832-28352. |
96 | HE Fang, WEI Yonggang, LI Haibin, et al. Synthesis gas generation by chemical-looping reforming using Ce-based oxygen carriers modified with Fe, Cu, and Mn oxides[J]. Energy & Fuels, 2009, 23(4): 2095-2102. |
97 | MATTISSON Tobias, Anders JÄRDNÄS, LYNGFELT Anders. Reactivity of some metal oxides supported on alumina with alternating methane and oxygen-application for chemical-looping combustion[J]. Energy & Fuels, 2003, 17(3): 643-651. |
98 | 孔庆峰. 煤化学链燃烧中过渡金属载氧体晶格氧迁移转化特性研究[D]. 南京: 东南大学, 2022. |
KONG Qingfeng. Characterization of transition metal oxygen carrers' lattice oxygen migration transformation during chemical looping combustion of coal[D]. Nanjing: Southeast University, 2022. | |
99 | SVOBODA Karel, SIEWIOREK Aleksandra, BAXTER David, et al. Thermodynamic possibilities and constraints for pure hydrogen production by a nickel and cobalt-based chemical looping process at lower temperatures[J]. Energy Conversion and Management, 2008, 49(2): 221-231. |
100 | ALALWAN Hayder A, AUGUSTINE Logan J, HUDSON Blake G, et al. Linking solid-state reduction mechanisms to size-dependent reactivity of metal oxide oxygen carriers for chemical looping combustion[J]. ACS Applied Energy Materials, 2021, 4(2): 1163-1172. |
101 | SVOBODA K, SIEWIOREK A, BAXTER D, et al. Thermodynamic possibilities and constraints of pure hydrogen production by a chromium, nickel, and manganese-based chemical looping process at lower temperatures[J]. Chemical Papers, 2007, 61(2): 110-120. |
102 | KANG Kyoung-Soo, KIM Chang-Hee, Ki-Kwang BAE, et al. Oxygen-carrier selection and thermal analysis of the chemical-looping process for hydrogen production[J]. International Journal of Hydrogen Energy, 2010, 35(22): 12246-12254. |
103 | SHARMA Jeet Prakash, KUMAR Ravinder, AHMADI Mohammad H, et al. Thermodynamic analysis on CSP integrated cerium oxide (CeO2-CeO1.72/1.83) water splitting cycle for hydrogen production[J]. International Journal of Hydrogen Energy, 2024, 53: 1259-1268. |
104 | ZHAO Longfei, DOU Binlin, ZHANG Hua, et al. Oxygen carriers for chemical-looping water splitting to hydrogen production: A critical review[J]. Carbon Capture Science & Technology, 2021, 1: 100006. |
105 | KHAN M N, SHAMIM T. Comparison of iron and tungsten based oxygen carriers for hydrogen production using chemical looping reforming[C]. proceedings of the 2nd International Conference on Green Energy Technology (ICGET), SAPIENZA Univ Rome, Rome, ITALY, 2017. |
106 | GUAN Yu, LIU Yinhe, LIN Xiaolong, et al. Research progress and perspectives of solid fuels chemical looping reaction with Fe-based oxygen carriers[J]. Energy & Fuels, 2022, 36(23): 13956-13984. |
107 | ZHAO Xiao, ZHOU Hui, SIKARWAR Vineet Singh, et al. Biomass-based chemical looping technologies: The good, the bad and the future[J]. Energy & Environmental Science, 2017, 10(9): 1885-1910. |
108 | HU Qiang, SHEN Ye, CHEW Jia Wei, et al. Chemical looping gasification of biomass with Fe2O3/CaO as the oxygen carrier for hydrogen-enriched syngas production[J]. Chemical Engineering Journal, 2020, 379: 122346. |
109 | HE Fang, ZHAO Kun, HUANG Zhen, et al. Synthesis of three-dimensionally ordered macroporous LaFeO3 perovskites and their performance for chemical-looping reforming of methane[J]. Chinese Journal of Catalysis, 2013, 34(6): 1242-1249. |
110 | YIN Xianglei, WANG Shen, WANG Baoyi, et al. Perovskite-type LaMn1- x B x O3+ δ (B=Fe, Co and Ni) as oxygen carriers for chemical looping steam methane reforming[J]. Chemical Engineering Journal, 2021, 422: 128751. |
111 | WANG Yajing, ZHENG Yane, WANG Yuhao, et al. Evaluation of Fe substitution in perovskite LaMnO3 for the production of high purity syngas and hydrogen[J]. Journal of Power Sources, 2020, 449: 227505. |
112 | LOKHANDE C D, GUJAR T P, SHINDE V R, et al. Electrochemical supercapacitor application of pervoskite thin films[J]. Electrochemistry Communications, 2007, 9(7): 1805-1809. |
113 | 杨坤. 焦炉煤气化学链制氢基础研究[D]. 昆明: 昆明理工大学, 2020. |
YANG Kun. Basic research on chemical looping hydrogen production of coke oven gas-oxygen carrier selection and cycle performance[D]. Kunming: Kunming University of Science and Technology, 2020. | |
114 | ZHAO Kun, SHEN Yang, HE Fang, et al. Preparation of double perovskite-type oxide LaSrFeCoO6 for chemical looping steam methane reforming to produce syngas and hydrogen[J]. Journal of Rare Earths, 2016, 34(10): 1032-1041. |
115 | ZHAO Kun, HE Fang, HUANG Zhen, et al. Perovskite-type oxides LaFe1- x Co x O3 for chemical looping steam methane reforming to syngas and hydrogen co-production[J]. Applied Energy, 2016, 168: 193-203. |
116 | LIU Feng, DAI Jinxin, LIU Jing, et al. Density functional theory study on the reaction mechanism of spinel CoFe2O4 with CO during chemical-looping combustion[J]. The Journal of Physical Chemistry C, 2019, 123(28): 17335-17342. |
117 | HAN Yujia, TIAN Ming, WANG Chaojie, et al. High-entropy spinel oxide (Fe0.2Mg0.2Mn0.1Al0.3Cr0.2)3O4 as a highly active and stable redox material for methane driven solar thermochemical water splitting[J]. Applied Catalysis B: Environmental, 2023, 339: 123096. |
118 | LI Min, QIU Yu, MA Li, et al. Chemical looping hydrogen storage and production: Use of binary ferrite-spinel as oxygen carrier materials[J]. Sustainable Energy & Fuels, 2020, 4(4): 1665-1673. |
1 | LI Guang, CHANG Yuxue, LIU Tao, et al. Hydrogen element flow and economic analyses of a coal direct chemical looping hydrogen generation process[J]. Energy, 2020, 206: 118243. |
2 | Aravindan M, Madhan Kumar V, HARIHARAN V S, et al. Fuelling the future: A review of non-renewable hydrogen production and storage techniques[J]. Renewable and Sustainable Energy Reviews, 2023, 188: 113791. |
3 | SHAO Lei, XU Jin, Henrik SAXÉN, et al. A numerical study on process intensification of hydrogen reduction of iron oxide pellets in a shaft furnace[J]. Fuel, 2023, 348: 128375. |
4 | 刘化章. 合成氨工业: 过去、现在和未来——合成氨工业创立100周年回顾、启迪和挑战[J]. 化工进展, 2013, 32(9): 1995-2005. |
LIU Huazhang. Ammonia synthesis industry: Past, present and future——Retrospect,enlightenment and challenge from 100 years of ammonia synthesis industry[J]. Chemical Industry and Engineering Progress, 2013, 32(9): 1995-2005. | |
5 | 李忠, 郑华艳, 谢克昌. 甲醇燃料的研究进展与展望[J]. 化工进展, 2008, 27(11): 1684-1695. |
LI Zhong, ZHENG Huayan, XIE Kechang. Advances and prospects of methand fuel[J]. Chemical Industry and Engineering Progress, 2008, 27(11): 1684-1695. | |
6 | 曹军文, 张文强, 李一枫, 等. 中国制氢技术的发展现状[J]. 化学进展, 2021, 33(12): 2215-2244. |
CAO Junwen, ZHANG Wenqiang, LI Yifeng, et al. Current status of hydrogen production in China[J]. Progress in Chemistry, 2021, 33(12): 2215-2244. | |
7 | CHO Won Chul, LEE Doyeon, KIM Chang Hee, et al. Feasibility study of the use of by-product iron oxide and industrial off-gas for application to chemical looping hydrogen production[J]. Applied Energy, 2018, 216: 466-481. |
8 | 陈健, 姬存民, 卜令兵. 碳中和背景下工业副产气制氢技术研究与应用[J]. 化工进展, 2022, 41(3): 1479-1486. |
CHEN Jian, JI Cunmin, BU Lingbing. Research and application of hydrogen production technology from industrial by-product gas under the background of carbon neutrality[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1479-1486. | |
119 | ZENG Dewang, LI Min, QIU Yu, et al. A high-performance ternary ferrite-spinel material for hydrogen storage via chemical looping redox cycles[J]. International Journal of Hydrogen Energy, 2020, 45(3): 2034-2043. |
120 | CUI Dongxu, QIU Yu, LI Min, et al. Cu-Fe-Al-O mixed spinel oxides as oxygen carrier for chemical looping hydrogen generation[J]. International Journal of Hydrogen Energy, 2020, 45(21): 11908-11915. |
121 | QIU Yu, MA Li, KONG Qingfeng, et al. Earth abundant spinel for hydrogen production in a chemical looping scheme at 550℃[J]. Green Energy & Environment, 2021, 6(5): 780-789. |
122 | ZENG Dewang, CUI Dongxu, QIU Yu, et al. Mn-Fe-Al-O mixed spinel oxides as oxygen carrier for chemical looping hydrogen production with CO2 capture[J]. Fuel, 2020, 274: 117854. |
123 | ZENG Dewang, QIU Yu, LI Min, et al. Ternary mixed spinel oxides as oxygen carriers for chemical looping hydrogen production operating at 550 degrees C[J]. ACS Appl Mater Interfaces, 2019, 11(47): 44223-44232. |
124 | YUE Caixia, ZHANG Wenying, WANG Min, et al. Crystal structure and octahedral deformation of orthorhombic perovskite ABO3: Case study of SrRuO3 [J]. Journal of Solid State Chemistry, 2022, 309: 122998. |
125 | TAHIR Muhammad, FAKHAR-E-ALAM M, ATIF M, et al. Investigation of optical, electrical and magnetic properties of hematite α - F e 2 O 3 nanoparticles via sol-gel and co-precipitation method[J]. Journal of King Saud University—Science, 2023, 35(5): 102695. |
126 | CHEN Liang, WANG Zhenghao, QIN Zhifeng, et al. Investigation of the selective oxidation roasting of vanadium‑iron spinel[J]. Powder Technology, 2021, 387: 434-443. |
127 | 马忠. 化学链循环反应中铁基载氧体烧结失活机理及抑制机制研究[D]. 南京: 东南大学, 2019. |
MA Zhong. Sintering deactivation and inhibition mechanisms of iron-based oxygen carrier in chemical looping process[D]. Nanjing: Southeast University, 2019. | |
128 | MA Zhong, XIAO Rui, CHEN Liangyong. Redox reaction induced morphology and microstructure evolution of iron oxide in chemical looping process[J]. Energy Conversion and Management, 2018, 168: 288-295. |
129 | LIU Feng, LIU Jing, YANG Yingju. Review on the theoretical understanding of oxygen carrier development for chemical-looping technologies[J]. Energy & Fuels, 2022, 36(17): 9373-9384. |
9 | 王一坤, 雷小苗, 邓磊, 等. 可燃废气利用技术研究进展(Ⅰ):高炉煤气、转炉煤气和焦炉煤气[J]. 热力发电, 2014, 43(7): 1-9, 14. |
WANG Yikun, LEI Xiaomiao, DENG Lei, et al. A review on utilization of combustible waste gas (Ⅰ): Blast furnace gas converter gas and coke oven gas[J]. Thermal Power Generation, 2014, 43(7): 1-9, 14. | |
10 | 刘福建, 郑勇, 曹彦宁, 等. 高炉煤气/转炉煤气低碳高效合成氨工艺流程[J]. 过程工程学报, 2023, 23(3): 350-358. |
LIU Fujian, ZHENG Yong, CAO Yanning, et al. Low-carbon and high-efficiency ammonia synthesis process from blast furnace gas/converter gas[J]. The Chinese Journal of Process Engineering, 2023, 23(3): 350-358. | |
11 | 任冰朗. 高温转炉煤气与焦炉煤气混合重整研究[D]. 北京: 北京科技大学, 2022. |
REN Binglang. The mixed reforming of high temperature converter gas and coke oven gas[D]. Beijing: University of Science and Technology Beijing, 2022. | |
12 | WANG Iwei, GAO Yunfei, WANG Xijun, et al. Liquid metal shell as an effective iron oxide modifier for redox-based hydrogen production at intermediate temperatures[J]. ACS Catalysis, 2021, 11(16): 10228-10238. |
13 | Jorge PERPIÑÁN, Begoña PEÑA, BAILERA Manuel, et al. Integration of carbon capture technologies in blast furnace based steel making: A comprehensive and systematic review[J]. Fuel, 2023, 336: 127074. |
14 | THURSFIELD Alan, MURUGAN Arul, FRANCA Rafael, et al. Chemical looping and oxygen permeable ceramic membranes for hydrogen production—A review[J]. Energy & Environmental Science, 2012, 5(6): 7421-7459. |
15 | YANG Qingchun, LI Xufang, YANG Qing, et al. Opportunities for CO2 utilization in coal to green fuel process: Optimal design and performance evaluation[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(3): 1329-1342. |
16 | GUO Zhancheng, WANG Shiwei, BAI Dingrong. Engineering thermochemistry: The science critical for the paradigm shift toward carbon neutrality[J]. Resources Chemicals and Materials, 2023, 2(4): 331-334. |
17 | XU Guangwen, BAI Dingrong, XU Chunming, et al. Challenges and opportunities for engineering thermochemistry in carbon-neutralization technologies[J]. National Science Review, 2022, 10(9)nwac217. |
130 | CHEN Shubo, XIANG Wenguo, CHEN Shiyi. Influence mechanism of inert carrier on the anti-carbon deposition effect of nickel-based oxygen carrier in chemical looping methane reforming process[J]. Applied Surface Science, 2022, 602: 154373. |
131 | MA Shiwei, CHEN Shiyi, SOOMRO Ahsanullah, et al. Characterization of Fe2O3/CeO2 oxygen carriers for chemical looping hydrogen generation[J]. International Journal of Hydrogen Energy, 2018, 43(6): 3154-3164. |
132 | MA Shiwei, LI Meng, WANG Genbao, et al. Effects of Zr doping on Fe2O3/CeO2 oxygen carrier in chemical looping hydrogen generation[J]. Chemical Engineering Journal, 2018, 346: 712-725. |
133 | JI Jinqing, SHEN Laihong. Enhanced morphological maintenance and redox stability by dispersing nickel ferrite into silica matrix for chemical looping hydrogen production via water splitting[J]. Fuel Processing Technology, 2023, 251: 107946. |
134 | HU Jiawei, POELMAN Hilde, MARIN Guy B, et al. FeO controls the sintering of iron-based oxygen carriers in chemical looping CO2 conversion[J]. Journal of CO2 Utilization, 2020, 40: 101216. |
135 | ZONG Teng, LI Lin, HAN Yujia, et al. Influence of the encapsulation degree of Fe0 active sites on performance of garnets for chemical looping partial oxidation of CH4 [J]. Applied Catalysis B: Environmental, 2022, 312: 121421. |
136 | HE Jiahui, YANG Qian, SONG Zhe, et al. Improving the carbon resistance of iron-based oxygen carrier for hydrogen production via chemical looping steam methane reforming: A review[J]. Fuel, 2023, 351: 128864. |
137 | LI Chen, SHI Yixiang, CAI Ningsheng. Carbon deposition on nickel cermet anodes of solid oxide fuel cells operating on carbon monoxide fuel[J]. Journal of Power Sources, 2013, 225: 1-8. |
138 | NARINDRI RARA WINAYU Birgitta, LI Chunta, CHU Hsin. Effective performance of ilmenite oxygen carrier for chemical looping combustion of carbon monoxide, hydrogen, and methane in a fluidized bed reactor[J]. Journal of Cleaner Production, 2022, 379: 134881. |
139 | HUANG Yanli, LI Xiaodong, ZHANG Qian, et al. Carbon deposition behaviors in dry reforming of CH4 at elevated pressures over Ni/MoCeZr/MgAl2O4-MgO catalysts[J]. Fuel, 2022, 310: 122449. |
140 | ZHU Min, CHEN Shiyi, SOOMRO Ahsanullah, et al. Effects of supports on reduction activity and carbon deposition of iron oxide for methane chemical looping hydrogen generation[J]. Applied Energy, 2018, 225: 912-921. |
141 | ZHAO Kun, FANG Xiaojie, CUI Chaoxian, et al. Co-production of syngas and H2 from chemical looping steam reforming of methane over anti-coking CeO2/La0.9Sr0.1Fe1- x Ni x O3 composite oxides[J]. Fuel, 2022, 317: 123455. |
18 | HAN Zhennan, JIA Xin, SONG Xingfei, et al. Engineering thermochemistry to cope with challenges in carbon neutrality[J]. Journal of Cleaner Production, 2023, 416: 137943. |
19 | ZENG Liang, CHENG Zhuo, FAN Jonathan A, et al. Metal oxide redox chemistry for chemical looping processes[J]. Nature Reviews Chemistry, 2018, 2(11): 349-364. |
20 | SONG Tao, SHEN Laihong. Review of reactor for chemical looping combustion of solid fuels[J]. International Journal of Greenhouse Gas Control, 2018, 76: 92-110. |
21 | NANDY Anirban, LOHA Chanchal, GU Sai, et al. Present status and overview of Chemical Looping Combustion technology[J]. Renewable and Sustainable Energy Reviews, 2016, 59: 597-619. |
22 | MATTISSON Tobias, KELLER Martin, LINDERHOLM Carl, et al. Chemical-looping technologies using circulating fluidized bed systems: Status of development[J]. Fuel Processing Technology, 2018, 172: 1-12. |
23 | ZHAO Haibo, TIAN Xin, MA Jinchen, et al. Development of tailor-made oxygen carriers and reactors for chemical looping processes at Huazhong University of Science & Technology[J]. International Journal of Greenhouse Gas Control, 2020, 93: 102898. |
24 | DE LEEUWE Christopher, ABBAS Syed Zaheer, AMIEIRO Alvaro, et al. Carbon-neutral and carbon-negative chemical looping processes using glycerol and methane as feedstock[J]. Fuel, 2023, 353: 129001. |
25 | HOSSEINI Davood, ABDALA Paula M, DONAT Felix, et al. Bifunctional core-shell architecture allows stable H2 production utilizing CH4 and CO2 in a catalytic chemical looping process[J]. Applied Catalysis B: Environmental, 2019, 258: 117946. |
26 | KONG Fanhe, SWIFT Jordan, ZHANG Qiaochu, et al. Biogas to H2 conversion with CO2 capture using chemical looping technology: Process simulation and comparison to conventional reforming processes[J]. Fuel, 2020, 279: 118479. |
27 | SAJJADI Baharak, CHEN Weiyin, FAN Maohong, et al. A techno-economic analysis of solar catalytic chemical looping biomass refinery for sustainable production of high purity hydrogen[J]. Energy Conversion and Management, 2021, 243: 114341. |
28 | REN Ke, ZHANG Tianzuo, BAI Yueyang, et al. Environmental and economical assessment of high-value utilization routes for coke oven gas in China[J]. Journal of Cleaner Production, 2022, 353: 131668. |
29 | 张艳. 中国焦炉煤气利用现状评述[J]. 山东化工, 2019, 48(16): 172-3, 80. |
ZHANG Yan. Review on the current status of coke oven gas utilization in China[J]. Shangdong Chemical Industry, 2019, 48(16): 172-3, 80. | |
142 | WANG Fangjun, CHEN Shiyi, CHEN Shubo, et al. Double adjustment of Ni and Co in CeO2/La2Ni2- x Co x O6 double perovskite type oxygen carriers for chemical looping steam methane reforming[J]. Chemical Engineering Journal, 2023, 465: 143041. |
143 | ZENG Dewang, LIU Tong, LI Yanzhi, et al. One dimensional nano-fiber structured Fe2O3/ZrO2 to enable efficient hydrogen production via water gas shift with chemical looping[J]. Fuel Processing Technology, 2023, 241: 107581. |
144 | 朱茜. 铁基载氧体释氧性能及微观机理研究[D]. 徐州: 中国矿业大学, 2020. |
ZHU Qian. Study on oxygen release performance and microscopic mechanism of iron-based oxygen carrier[D]. Xuzhou: China University of Mining and Technology, 2020. | |
145 | 袁妮妮, 白红存, 安梅, 等. 化学链过程中Cu低浓度掺杂改性Fe-基载氧体反应性能:实验与理论模拟[J]. 化工学报, 2020, 71(11): 5294-5302. |
YUAN Nini, BAI Hongcun, AN Mei, et al. Reactivity of low-concentration Cu-doped modified Fe-based oxygen carrier in chemical looping: experiments and theoretical simulations[J]. CIESC Journal, 2020, 71(11): 5294-5302. | |
146 | AN Mei, YUAN Nini, GUO Qingjie. Analysis of the role of Cu for improving the reactivity of Cu-modified Fe2O3 oxygen carriers in the chemical looping gasification process with coal[J]. Fuel, 2021, 305: 121619. |
147 | YIN Xianglei, SHEN Laihong, WANG Shen, et al. Double adjustment of Co and Sr in LaMnO3+ δ perovskite oxygen carriers for chemical looping steam methane reforming[J]. Applied Catalysis B: Environmental, 2022, 301: 120816. |
148 | XU Tingting, WANG Xun, ZHAO Haibo, et al. Modulating lattice oxygen activity of Ca2Fe2O5 brownmillerite for the co-production of syngas and high purity hydrogen via chemical looping steam reforming of toluene[J]. Applied Catalysis B: Environmental, 2023, 320: 122010. |
149 | GUAN Yu, ZHANG Guohong, WANG Ruru, et al. Study on the synergistic effect and oxygen vacancy of CeO2/Fe2O3 oxygen carrier for improving reactivity in carbon monoxide chemical looping combustion[J]. Fuel, 2024, 357: 129832. |
150 | 马士伟. 基于改性Fe2O3/CeO2载氧体制氢特性研究[D]. 南京: 东南大学, 2019. |
MA Siwei. Characterization of modified Fe2O3/CeO2 oxygen carrier for chemical looping hydrogen generation[D]. Nanjing: Southeast University, 2019. | |
30 | XIANG Dong, ZHAO Shuang. Parameter optimization and thermodynamic analysis of COG direct chemical looping hydrogen processes[J]. Energy Conversion and Management, 2018, 172: 1-8. |
31 | BAHZAD Husain, SHAH Nilay, DOWELL Niall Mac, et al. Development and techno-economic analyses of a novel hydrogen production process via chemical looping[J]. International Journal of Hydrogen Energy, 2019, 44(39): 21251-21263. |
32 | HENG Lijun, ZHANG Huiyan, XIAO Rui. Hydrogen production from heavy fraction of bio-oil using iron-based chemical looping process: Thermodynamic simulation and performance analysis[J]. International Journal of Hydrogen Energy, 2016, 41(40): 17771-17783. |
33 | KATHE Mandar V, EMPFIELD Abbey, NA Jing, et al. Hydrogen production from natural gas using an iron-based chemical looping technology: Thermodynamic simulations and process system analysis[J]. Applied Energy, 2016, 165: 183-201. |
34 | ZHANG Fan, ZHU Lin, WANG Yuan, et al. Exergy analysis on the process for three reactors chemical looping hydrogen generation[J]. International Journal of Hydrogen Energy, 2020, 45(46): 24322-24332. |
35 | 张凡. 煤气化与化学链制氢系统集成及性能研究[D]. 成都: 西南石油大学, 2023. |
ZHANG Fan. Research on integration and performance of coal gasification and chemical chain hydrogen production system[D]. Chengdu: Southwest Petroleum University, 2023. | |
36 | CHISALITA Dora-Andreea, PETRESCU Letitia, GALUSNYAK Stefan Cristian, et al. Environmental evaluation of hydrogen production employing innovative chemical looping technologies-A Romanian case study[J]. International Journal of Hydrogen Energy, 2023, 48(32): 12112-12128. |
37 | ZHAO Yaxian, ZHAO Yingjie, YI Qun, et al. Highly flexible and energy-efficient process for converting coke-oven gas and pulverized coke into methanol and ammonia using chemical looping technology[J]. Energy Conversion and Management, 2021, 248: 114796. |
38 | ZHAO Yaxian, ZHAO Yingjie, WANG Jiancheng, et al. Highly simplified and efficient process for methanol and ammonia synthesis from coke-oven gas and pulverized coke using chemical looping technology[J]. International Journal of Hydrogen Energy, 2023, 4(99): 39330-39346. |
39 | XIANG Dong, ZHOU Yunpeng. Concept design and techno-economic performance of hydrogen and ammonia co-generation by coke-oven gas-pressure swing adsorption integrated with chemical looping hydrogen process[J]. Applied Energy, 2018, 229: 1024-1034. |
40 | PALONE Orlando, GAGLIARDI Gabriele G, MECHELLI Marco, et al. Techno-economic analysis of sustainable methanol and ammonia production by chemical looping hydrogen generation from waste plastic[J]. Energy Conversion and Management, 2023, 292: 117389. |
41 | WANG Qiang, YANG Yong, ZHOU Huairong. Highly efficient CO2 capture and utilization of coal and coke-oven gas coupling for urea synthesis process integrated with chemical looping technology: Modeling, parameter optimization, and performance analysis[J]. Process, 2023, 11(3): 960. |
42 | HARIBAL Vasudev Pralhad, WANG Xijun, DUDEK Ryan, et al. Modified ceria for "low-temperature" CO2 utilization: A chemical looping route to exploit industrial waste heat[J]. Advanced Energy Materials, 2019, 9(41): 1901963. |
43 | HARIBAL Vasudev Pralhad, HE Feng, MISHRA Amit, et al. Iron-doped BaMnO3 for hybrid water splitting and syngas generation[J]. ChemSusChem, 2017, 10(17): 3402-3408. |
44 | YESOL Woo, MIN Park Jae, WOOK Bae Jong, et al. Kinetic modeling of the steam reforming of light hydrocarbon mixture from waste resources: Effects of gas composition on hydrogen production[J]. International Journal of Hydrogen Energy, 2023, 48(41): 15383-15391. |
45 | AL-FATESH Ahmed S, AL-GARADI Najib Y A, OSMAN Ahmed I, et al. From plastic waste pyrolysis to Fuel: Impact of process parameters and material selection on hydrogen production[J]. Fuel, 2023, 344: 128107. |
46 | 王一迪. 化学链产氢还原阶段Fe2O3动力学研究[D]. 东营: 中国石油大学(华东), 2017. |
WANG Yidi. Reduction kinetics of Fe2O3 for chemical looping hydrogen generation[D]. Dongying: China University of Petroleum (East China), 2017. | |
47 | WANG Haiming, LIU Bingjie, YANG Guangyao, et al. Multistep kinetic study of Fe2O3 reduction by H2 based on isothermal thermogravimetric analysis data deconvolution[J]. International Journal of Hydrogen Energy, 2023, 48(44): 16601-16613. |
48 | WANG Yidi, WANG Xinyue, HUA Xiuning, et al. The reduction mechanism and kinetics of Fe2O3 by hydrogen for chemical-looping hydrogen generation[J]. Journal of Thermal Analysis and Calorimetry, 2017, 129(3): 1831-1838. |
49 | KUHN C, DÜLL A, ROHLFS P, et al. Iron as recyclable energy carrier: Feasibility study and kinetic analysis of iron oxide reduction[J]. Applications in Energy and Combustion Science, 2022, 12: 100096. |
50 | GARG Pritesh, HU Xiaojun, LI Yuan, et al. Kinetics of iron oxide reduction in H2/H2O gas mixture: Global and stepwise reduction[J]. Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science, 2022, 53(3): 1759-1774. |
51 | XU Chenyang, ZHANG Jianliang, WANG Yaozu, et al. Study on the reduction of Fe2O3 pellets by CO-CO2 and H2-H2O: Reaction kinetics and pore network model[J]. Minerals Engineering, 2023, 202: 108248. |
151 | MA Zhong, WU Kai, WANG Haolin, et al. Mechanism of solid state diffusion on the performance evolution of iron-based oxygen carrier at different operating conditions for chemical looping process[J]. Fuel, 2023, 331: 125699. |
152 | MA Li, QIU Yu, LI Min, et al. Efficient hydrogen production through the chemical looping redox cycle of YSZ supported iron oxides[J]. Green Energy & Environment, 2021, 6(6): 875-883. |
153 | ZENG Dewang, KANG Fengwen, QIU Yu, et al. Iron oxides with gadolinium-doped cerium oxides as active supports for chemical looping hydrogen production[J]. Chemical Engineering Journal, 2020, 396: 125153. |
52 | 胡月. 生物质废物化学链制氢工艺中铁基载氧体制备与性能研究[D]. 北京: 清华大学, 2014. |
HU Yue. Preparation and reactivity investigation of iron-based oxygen carriers for hydrogen production via biomass derived syngas chemical looping process[D]. Beijing: Tsinghua University, 2014. | |
53 | SUN Eddie, WAN Gang, HARIBAL Vasudev, et al. Low-temperature carbon dioxide conversion via reverse water-gas shift thermochemical looping with supported iron oxide[J]. Cell Reports Physical Science, 2023, 4(9): 101581. |
54 | 陈庚. 气基还原氧化铁动力学机理研究[D]. 大连: 大连理工大学, 2011. |
CHEN Geng. The kinetics of the gas-based reduxtion of iron ore[D]. Dalian: Dalian University of Technology, 2011. | |
55 | PIOTROWSKI Krzysztof, MONDAL Kanchan, LORETHOVA Hana, et al. Effect of gas composition on the kinetics of iron oxide reduction in a hydrogen production process[J]. International Journal of Hydrogen Energy, 2005, 30(15): 1543-1554. |
56 | CAVALIERE Pasquale, PERRONE Angelo, MARSANO Debora. Effect of reducing atmosphere on the direct reduction of iron oxides pellets[J]. Powder Technology, 2023, 426: 118650. |
57 | TAHARI Maratun Najiha ABU, SALLEH Fairous, TENGKU SAHARUDDIN Tengku Shafazila, et al. Influence of hydrogen and carbon monoxide on reduction behavior of iron oxide at high temperature: Effect on reduction gas concentrations[J]. International Journal of Hydrogen Energy, 2021, 46(48): 24791-24805. |
58 | WANG Y D, HUA X N, ZHAO C C, et al. Step-wise reduction kinetics of Fe2O3 by CO/CO2 mixtures for chemical looping hydrogen generation[J]. International Journal of Hydrogen Energy, 2017, 42(9): 5667-75. |
59 | 花秀宁. 生物质废物热解气深度还原化学链制氢工艺及其机理研究[D] 北京: 清华大学, 2017. |
HUA Xiuning. Deep reduction chemical looping hydrogen generation with pyrolysis gas from biomass waste as fuel: technical and mechanism investigation[D]. Beijing: Tsinghua University, 2017. | |
60 | HUA Xiuning, WANG Wei, WANG Feng. Performance and kinetics of iron-based oxygen carriers reduced by carbon monoxide for chemical looping combustion[J]. Frontiers of Environmental Science & Engineering, 2015, 9(6): 1130-1138. |
61 | FU Tiantian, TURAP Yusan, WANG Iwei, et al. Using high/low WHSV value to uncover the reaction behavior between methane and iron oxide in packed bed for chemical looping hydrogen generation process[J]. Industrial & Engineering Chemistry Research, 2020, 59(8): 3301-3309. |
62 | CHENG Zhuo, QIN Lang, GUO Mengqing, et al. Oxygen vacancy promoted methane partial oxidation over iron oxide oxygen carriers in the chemical looping process[J]. Physical Chemistry Chemical Physics, 2016, 18(47): 32418-32428. |
63 | FENG Yuchuan, WANG Nana, GUO Xin, et al. Characteristics of dopant distribution and surface oxygen vacancy formation for modified Fe2O3 in chemical looping combustion[J]. Fuel, 2020, 276: 117942. |
64 | CHENG Xianming, LI Kongzhai, WANG Hua, et al. Chemical looping combustion of methane in a large laboratory unit: Model study on the reactivity and effective utilization of typical oxygen carriers[J]. Chemical Engineering Journal, 2017, 328: 382-396. |
65 | Qing LYU, Yana QIE, LIU Xiaojie, et al. Effect of hydrogen addition on reduction behavior of iron oxides in gas-injection blast furnace[J]. Thermochimica Acta, 2017, 648: 79-90. |
66 | 郭培民, 赵沛, 王磊, 等. 移动床内氧化铁还原及还原气体氧化行为分析[J]. 钢铁研究学报, 2018, 30(5): 348-53. |
GUO Peimin, ZHAO Pei, WANG Lei, et al. Analysis of reduction of iron ore and oxidation of reducing gas in moving bed[J]. Journal of Iron and Steel Research, 2018, 30(5): 348-353. | |
67 | SUN Zhenkun, RASI Negar Manafi, LU Dennis Y, et al. Chemical looping reforming for syngas production with co-conversion of CH4 and CO2 by using ilmenite ore as both oxygen carrier and catalyst[J]. Chemical Engineering Science, 2023, 280: 119050. |
68 | WANG Zhentong, GONG Zhiqiang, TURAP Yusan, et al. Renewable hydrogen production from biogas using iron-based chemical looping technology[J]. Chemical Engineering Journal, 2022, 429: 132192. |
69 | CHEN Wei-Hsin, LIN Murong, YU A B, et al. Hydrogen production from steam reforming of coke oven gas and its utility for indirect reduction of iron oxides in blast furnace[J]. International Journal of Hydrogen Energy, 2012, 37(16): 11748-11758. |
70 | YANG Kun, GU Zhenhua, LONG Yanhui, et al. Hydrogen production via chemical looping reforming of coke oven gas[J]. Green Energy & Environment, 2021, 6(5): 678-692. |
71 | 祝捷. 生物质废物热解气单塔固定床化学链制氢系统实验研究[D]. 北京: 清华大学, 2015. |
ZHU Jie. Study on hydrogen generation from biomass pyrolysis gas by packed bed technology based chemical looping process[D]. Beijing: Tsinghua University, 2015. | |
72 | GUO Rui, LI Leiming, CHANG Chenggong, et al. Steel slag-enhanced reforming process for blue hydrogen production from coke oven gas: Techno-economic evaluation[J]. Journal of Cleaner Production, 2022, 379: 134778. |
73 | JIANG Xiaofeng, ZHENG Hao, WU Yazhou, et al. Chemical looping preferential oxidation of CO over ceria-supported γ - F e 2 O 3 [J]. Chemical Engineering Journal, 2023, 476: 146482. |
74 | LONG Yanhui, YANG Kun, GU Zhenhua, et al. Hydrogen generation from water splitting over polyfunctional perovskite oxygen carriers by using coke oven gas as reducing agent[J]. Applied Catalysis B: Environmental, 2022, 301: 120778. |
75 | ZUO Huicong, LU Chunqiang, JIANG Lei, et al. Hydrogen production and CO2 capture from Linz-Donawitz converter gas via a chemical looping concept[J]. Chemical Engineering Journal, 2023, 477: 146870. |
76 | YIN Fan, SUN Liyan, ZENG Dewang, et al. Investigations on oxygen carriers derived from natural ores or industrial solid wastes for chemical looping hydrogen generation using biomass pyrolysis gas[J]. Energy, 2024, 293: 130501. |
77 | ZENG Liang, TONG Andrew, KATHE Mandar, et al. Iron oxide looping for natural gas conversion in a countercurrent moving bed reactor[J]. Applied Energy, 2015, 157: 338-347. |
78 | WANG Kun, TIAN Xin, ZHAO Haibo. Sulfur behavior in chemical-looping combustion using a copper ore oxygen carrier[J]. Applied Energy, 2016, 166: 84-95. |
79 | PACHLER Robert F, MAYER Karl, PENTHOR Stefan, et al. Fate of sulfur in chemical looping combustion of gaseous fuels using a copper-based oxygen carrier[J]. International Journal of Greenhouse Gas Control, 2018, 71: 86-94. |
80 | GU Haiming, SHEN Laihong, XIAO Jun, et al. Evaluation of the effect of sulfur on iron-ore oxygen carrier in chemical-looping combustion[J]. Industrial & Engineering Chemistry Research, 2013, 52(5): 1795-1805. |
81 | NIU Xin, SHEN Laihong. Release and transformation of phosphorus in chemical looping combustion of sewage sludge[J]. Chemical Engineering Journal, 2018, 335: 621-630. |
82 | YANG Jing, MA Liping, LIU Hongpan, et al. Chemical behavior of fluorine and phosphorus in chemical looping gasification using phosphogypsum as an oxygen carrier[J]. Chemosphere, 2020, 248: 125979. |
83 | YAN Jingchun, SHI Chuang, SHEN Yongze, et al. Intensified effect of phosphorus doping to La-Fe-O perovskite-type oxygen carrier in microalgae chemical looping gasification for enhanced syngas production[J]. Fuel, 2024, 366: 131345. |
84 | GAO Enxia, ZHOU Yuzhao, GENG Chao, et al. Effects of CaF2 on the direct reduction of beach titanomagnetite at different temperatures[J]. Environmental Progress & Sustainable Energy, 2023, 42(2): e14013. |
[1] | GONG Decheng, SHEN Qian, ZHU Xianqing, HUANG Yun, XIA Ao, ZHANG Jingmiao, ZHU Xun, LIAO Qiang. Recent progress in the production of hydrogen-rich syngas via supercritical water gasification of microalgae [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3709-3728. |
[2] | ZHANG Zhen, ZHANG Fan, YUN Zhiting. Carbon reduction and techno-economic analysis of using green hydrogen in chemical and petrochemical industry [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3021-3028. |
[3] | ZENG Zhuang, LI Kezhi, YUAN Zhiwei, DU Jintao, LI Zhuoshi, WANG Yue. Advances in modified Fischer-Tropsch synthesis catalysts for CO/CO2 hydrogenation to higher alcohols [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3061-3079. |
[4] | WAN Chengfeng, LI Zhida, ZHANG Chunyue, LU Lu. Highly efficient electrocatalytic water splitting by MXene supported CoP nanorods [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3232-3239. |
[5] | ZHOU Yuntao, WANG Hongxing, LI Xingang, CUI Lifeng. Application and research progress of CeO2 support in CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2723-2738. |
[6] | ZHOU Qiuming, NIU Congcong, LYU Shuaishuai, LI Hongwei, WEN Fuli, XU Run, LI Mingfeng. Promoting CO2 hydrogenation to methanol through product transformation and separation [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2776-2785. |
[7] | LU Xinxin, CAI Dongren, ZHAN Guowu. Research progress in the construction of integrated catalysts based on solid precursors and their application in CO2 hydrogenation [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2786-2802. |
[8] | LI Haipeng, WU Tong, WANG Qi, GAO Shiwang, WANG Xiaolong, LI Xu, GAO Xinhua, NIAN Pei, WEI Yibin. Effective methanol production by CO2 hydrogenation using water-permeable NaA zeolite membrane [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2834-2842. |
[9] | WANG Jiarui, LIU Dawei, DENG Yao, XU Jin, MA Xiaoxun, XU Long. Research progress of oxygen carriers in chemical looping reforming reaction of methane [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2235-2253. |
[10] | ZHOU Anning, JIANG Yuhan, LIU Moxuan, ZHAO Wei, LI Zhen. Research progress in hydrogen production from electrolytic coal slurry: Effects of coal rank and minerals, and the evolution of coal structure [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2294-2310. |
[11] | WU Da, JIANG Shujiao, WEI Qiang, YUAN Shenghua, YANG Gang, ZHANG Cheng. Research progress on efficient utilization technology of residue in energy transition [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2343-2353. |
[12] | GUI Xin, CHEN Huiyong, BAI Boyang, JIA Yongliang, MA Xiaoxun. Catalytic hydrogenation of pyrene over Mo-doped NiC/Al-MCM-41 [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2386-2395. |
[13] | DENG Yao, ZHAO Qingpeng, XU Jin, LIU Dawei, MA Xiaoxun, XU Long. Methane chemical looping reforming over cordierite-loaded Fe/Ce oxygen carriers prepared by ball milling [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2396-2408. |
[14] | ZHAO Wei, JIANG Yuhan, LI Zhen, LI Yihong, ZHOU Anning, WANG Hong. Mechanism of the impact of hydrogen/oxygen bubbles in the separation and hydrogen production of coal macerals electroflotation [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2428-2435. |
[15] | DING Sijia, JIANG Shujiao, YANG Zhanlin, PENG Shaozhong, JIANG Qianmin. Design of heavy oil hydrodenitrogenation catalysts based on hydrogenation performance determined by structure of nitrogen compounds [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2436-2448. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |