Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (7): 3567-3577.DOI: 10.16085/j.issn.1000-6613.2024-0104
• Column: Thermochemical Reaction Engineering Technology • Previous Articles
GUO Lei(), LIU Feng, GUO Zhancheng()
Received:
2024-01-14
Revised:
2024-04-06
Online:
2024-08-14
Published:
2024-07-10
Contact:
GUO Zhancheng
通讯作者:
郭占成
作者简介:
郭磊(1987—),男,博士,副研究员,研究方向为低碳冶金、氢冶金等。E-mail: leiguo@ustb.edu.cn。
基金资助:
CLC Number:
GUO Lei, LIU Feng, GUO Zhancheng. Development process of iron and steel metallurgy technology and the low-carbon development path in the new era[J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3567-3577.
郭磊, 刘枫, 郭占成. 钢铁冶金技术发展历程与新时期低碳发展路径[J]. 化工进展, 2024, 43(7): 3567-3577.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-0104
工艺名称 | 国家或地区 | 实施企业 | 技术特点 |
---|---|---|---|
COURSE50 | 日本 | 日本制铁JFE | 在12m3高炉完成第一阶段实验,实现碳减排9.4%指标 |
ULCOS TGR-BF | 欧盟 | 瑞典LKAB | 焦比由400kg/tHM降至260kg/tHM左右,碳耗降低24%,炉顶煤气循环率达到90%以上 |
tkH2Steel | 德国 | 蒂森克虏伯钢铁 | 成功将氢气通过风口注入杜伊斯堡钢厂的9号高炉内,验证了高炉喷吹纯氢低碳冶炼技术的可行性和安全性 |
富氢碳循环氧气高炉HyCROF | 中国 | 宝钢集团新疆 八一钢铁有限公司 | 实现焦比290kg/tHM以下,煤比100kg/tHM以上,风口喷吹煤气量700~750m3/tHM,碳排降低20%以上,最高利用系数达到5.0t/(m3·d) |
全氧富氢碳循环还原熔化炉 | 中国 | 河钢集团 | 融合了氢基竖炉与COREX下部熔化气化炉的优点,与高炉炼铁相比降低碳排40%以上 |
高炉喷吹富氢气体技术 | 中国 | 山西晋南钢铁 | 在两座1860m3高炉上实现了富氢气体喷吹63m3/tHM(标准),燃料比平均降低36kg/tHM,焦炉煤气与固体燃料的平均置换比0.57kg/m3(标准) |
纯氢气源喷吹富氢冶炼技术 | 中国 | 上海大学 兴国铸业公司 | 纯氢气喷吹量为250m3/tHM,实现焦比降低10%以上,CO2排放减少10%以上和铁产量增加13%以上 |
工艺名称 | 国家或地区 | 实施企业 | 技术特点 |
---|---|---|---|
COURSE50 | 日本 | 日本制铁JFE | 在12m3高炉完成第一阶段实验,实现碳减排9.4%指标 |
ULCOS TGR-BF | 欧盟 | 瑞典LKAB | 焦比由400kg/tHM降至260kg/tHM左右,碳耗降低24%,炉顶煤气循环率达到90%以上 |
tkH2Steel | 德国 | 蒂森克虏伯钢铁 | 成功将氢气通过风口注入杜伊斯堡钢厂的9号高炉内,验证了高炉喷吹纯氢低碳冶炼技术的可行性和安全性 |
富氢碳循环氧气高炉HyCROF | 中国 | 宝钢集团新疆 八一钢铁有限公司 | 实现焦比290kg/tHM以下,煤比100kg/tHM以上,风口喷吹煤气量700~750m3/tHM,碳排降低20%以上,最高利用系数达到5.0t/(m3·d) |
全氧富氢碳循环还原熔化炉 | 中国 | 河钢集团 | 融合了氢基竖炉与COREX下部熔化气化炉的优点,与高炉炼铁相比降低碳排40%以上 |
高炉喷吹富氢气体技术 | 中国 | 山西晋南钢铁 | 在两座1860m3高炉上实现了富氢气体喷吹63m3/tHM(标准),燃料比平均降低36kg/tHM,焦炉煤气与固体燃料的平均置换比0.57kg/m3(标准) |
纯氢气源喷吹富氢冶炼技术 | 中国 | 上海大学 兴国铸业公司 | 纯氢气喷吹量为250m3/tHM,实现焦比降低10%以上,CO2排放减少10%以上和铁产量增加13%以上 |
主要技术指标 | 工艺 | ||||
---|---|---|---|---|---|
MIDREX | HYL/ENERGIRON | PERED | CSDRI | HYBRIT | |
市场份额/% | 60.5% | 13.2 | 2.1 | — | — |
供气温度/℃ | 750~900 | 960~1080 | 约850 | 820~880 | 1000 |
压力/MPa | 0.2~0.3 | 0.6~0.8 | 0.2 | 0.5~0.7 | 0.6~0.8 |
供气H2/CO | <2 | 4~8 | 1.5~2.5 | 1.5~2.5 | 纯氢 |
供气强度(标准)/m3·t-1矿 | 约1400 | >1400 | 1600 | 700~900 | >1400 |
主要技术指标 | 工艺 | ||||
---|---|---|---|---|---|
MIDREX | HYL/ENERGIRON | PERED | CSDRI | HYBRIT | |
市场份额/% | 60.5% | 13.2 | 2.1 | — | — |
供气温度/℃ | 750~900 | 960~1080 | 约850 | 820~880 | 1000 |
压力/MPa | 0.2~0.3 | 0.6~0.8 | 0.2 | 0.5~0.7 | 0.6~0.8 |
供气H2/CO | <2 | 4~8 | 1.5~2.5 | 1.5~2.5 | 纯氢 |
供气强度(标准)/m3·t-1矿 | 约1400 | >1400 | 1600 | 700~900 | >1400 |
年份 | 工艺名称 | 企业 | 预还原设备 | 气源 | 原料 | 温度/K | 压力 |
---|---|---|---|---|---|---|---|
1950 | H-Iron | Hydrocarbon Research Inc. and Bethlehem Steel Co. | 三段流化床 | 96% H2,其余N2 | — | 813 | 27bar |
1962 | FIOR | Exxon | 三段流化床 | 天然气或煤的燃烧气 | 脉石相<5%,dp<4.7mm,<0.043mm颗粒低于20% | 973~1073 | 10bar |
1968 | NOVALFER | — | 二段流化床 | 天然气气化重整 | — | 853~973 | — |
1976 | ELRED | Asea and Stora Kopparberg | 循环流化床 | 非焦煤 | 磁选精矿 | 1223~1273 | 5bar |
1979 | UN-IRON or HIB | US-Steel Co. | 二段流化床 | 水蒸气催化裂化 | <1.65mm | 973~1023 | 2bar |
1985 | Circofer | Lurgi | 循环流化床 | 天然气或煤的燃烧气 | 0.3mm<dp<1mm | <1233 | — |
1993 | DIOS | Japan Steel Federation | 快速鼓泡流化床 | 非焦煤或煤气 | <8mm | 873~1073 | — |
1996 | Circored | Lurgi | 循环鼓泡流化床 | 天然气热解 | — | 903~923 | 4bar |
2001 | Finmet | BHP and VAI | 四段鼓泡流化床 | 天然气热解 | <12mm | 923~1123 | 10bar |
2003 | Finex | Posco and VAI | 三或四段鼓泡流化床 | 非焦煤 | <8mm | 673~1073 | 4bar |
2003 | HIsmelt | Rio Tinto,Nucor,Mitsubishi and China Shougang Group | 一段循环流化床 | 非焦煤 | <6mm | <1123 | 环境 压力 |
2004 | FROLTS | Central Iron and Steel Research Institute of China | 快速循环鼓泡流化床 | 煤燃烧气 | <1mm | 973~1023 | — |
年份 | 工艺名称 | 企业 | 预还原设备 | 气源 | 原料 | 温度/K | 压力 |
---|---|---|---|---|---|---|---|
1950 | H-Iron | Hydrocarbon Research Inc. and Bethlehem Steel Co. | 三段流化床 | 96% H2,其余N2 | — | 813 | 27bar |
1962 | FIOR | Exxon | 三段流化床 | 天然气或煤的燃烧气 | 脉石相<5%,dp<4.7mm,<0.043mm颗粒低于20% | 973~1073 | 10bar |
1968 | NOVALFER | — | 二段流化床 | 天然气气化重整 | — | 853~973 | — |
1976 | ELRED | Asea and Stora Kopparberg | 循环流化床 | 非焦煤 | 磁选精矿 | 1223~1273 | 5bar |
1979 | UN-IRON or HIB | US-Steel Co. | 二段流化床 | 水蒸气催化裂化 | <1.65mm | 973~1023 | 2bar |
1985 | Circofer | Lurgi | 循环流化床 | 天然气或煤的燃烧气 | 0.3mm<dp<1mm | <1233 | — |
1993 | DIOS | Japan Steel Federation | 快速鼓泡流化床 | 非焦煤或煤气 | <8mm | 873~1073 | — |
1996 | Circored | Lurgi | 循环鼓泡流化床 | 天然气热解 | — | 903~923 | 4bar |
2001 | Finmet | BHP and VAI | 四段鼓泡流化床 | 天然气热解 | <12mm | 923~1123 | 10bar |
2003 | Finex | Posco and VAI | 三或四段鼓泡流化床 | 非焦煤 | <8mm | 673~1073 | 4bar |
2003 | HIsmelt | Rio Tinto,Nucor,Mitsubishi and China Shougang Group | 一段循环流化床 | 非焦煤 | <6mm | <1123 | 环境 压力 |
2004 | FROLTS | Central Iron and Steel Research Institute of China | 快速循环鼓泡流化床 | 煤燃烧气 | <1mm | 973~1023 | — |
1 | 赵紫薇, 孔福林, 童莉葛, 等. 基于“3060” 目标的中国钢铁行业二氧化碳减排路径与潜力分析[J]. 钢铁, 2022, 57(2): 162-174. |
ZHAO Ziwei, KONG Fulin, TONG Lige, et al. Analysis of CO2 emission reduction path and potential of China’s steel industry under the “3060” target[J]. Iron & Steel, 2022, 57(2): 162-174. | |
2 | XU Guangwen, BAI Dingrong, XU Chunming, et al. Challenges and opportunities for engineering thermochemistry in carbon-neutralization technologies[J]. National Science Review, 2022, 10(9): nwac217. |
3 | GUO Zhancheng, WANG Shiwei, BAI Dingrong. Engineering thermochemistry: The science critical for the paradigm shift toward carbon neutrality[J]. Resources Chemicals and Materials, 2023, 2(4): 331-334. |
4 | HAN Zhennan, JIA Xin, SONG Xingfei, et al. Engineering thermochemistry to cope with challenges in carbon neutrality[J]. Journal of Cleaner Production, 2023, 416: 137943. |
5 | 中国科学技术协会主编,中国金属学会 编著. 2012—2013冶金工程技术学科发展报告[M]. 北京: 中国科学技术出版社, 2014. |
China Association for Science and Technology. Report on advances in metallurgical engineering and technology 2012—2013[M]. Beijing: China Science and Technology Press, 2014. | |
6 | CHENG Yunlv, ZHENG Renyang, LIU Zhicheng, et al. Hydrogen-based industry: A prospective transition pathway toward a low-carbon future[J]. National Science Review, 2023, 10(9): nwad091. |
7 | ZHANG Suojiang, ZHANG Xiangping, SHI Chunyan, et al. Revolutionary technology of low-carbon chemical processes[J]. National Science Review, 2023, 10(9): nwad132. |
8 | 陈建立, 毛瑞林, 王辉, 等. 甘肃临潭磨沟寺洼文化墓葬出土铁器与中国冶铁技术起源[J]. 文物, 2012(8): 45-53, 2. |
CHEN Jianli, MAO Ruilin, WANG Hui, et al. Iron objects unearthed from Mogou Siwa Cultural Tomb in Lintan, Gansu Province and the origin of iron smelting technology in China[J]. Cultural Relics, 2012(8): 45-53, 2. | |
9 | 张光明, 于孔宝, 陈旭. 中国冶铁发源地研究文集[M]. 济南: 齐鲁书社, 2012. |
ZHANG Guangming, YU Kongbao, CHEN Xu. Collection of research on the birthplace of iron smelting in China[M]. Jinan: Qilu Press, 2012. | |
10 | (丹)华道安 著. 中国古代钢铁技术史[M]. [加]李玉牛译. 成都: 四川人民出版社, 2018. |
WAGNER Donald B. Iron and steel in ancient China[M]. LI Yuniu trans. Chengdu: Sichuan People’s Publishing House, 2018. | |
11 | 北京科技大学冶金与材料史研究所. 铸铁中国: 古代钢铁技术发明创造巡礼[M]. 北京: 冶金工业出版社, 2011. |
Institute of Metallurgy and Materials History. University of Science and Technology Beijing. Cast Iron China—Ancient Iron and Steel Technology Invention and Creation Tour[M]. Beijing: Metallurgical Industry Press, 2011. | |
12 | 魏寿崑. 活度在冶金物理化学中的应用[M]. 北京: 中国工业出版社, 1964. |
WEI Shoukun. Application of activity in Metallurgical Physical Chemistry[M]. Beijing: China Industry Press, 1964. | |
13 | (日)鞭岩, 森山昭 著. 冶金反应工程学[M]. 蔡志鹏, 谢裕生译. 北京: 科学出版社, 1981. |
BIAN Yan, Akie Moriyama. Metallurgical Reaction Engineering[M].CAI Zhipeng, XIE Yusheng, trans. Beijing: Science Press, 1981. | |
14 | 张寿荣, 于仲洁. 中国炼铁技术60年的发展[J]. 钢铁, 2014, 49(7): 8-14. |
ZHANG Shourong, YU Zhongjie. Development of ironmaking technology in the past 60 years[J]. Iron & Steel, 2014, 49(7): 8-14. | |
15 | 赵艺伟, 左海滨, 佘雪峰, 等. 钢铁工业二氧化碳排放计算方法实例研究[J]. 有色金属科学与工程, 2019, 10(1): 34-40. |
ZHAO Yiwei, ZUO Haibin, SHE Xuefeng, et al. Case study on calculation method of carbon dioxide emission in iron and steel industry[J]. Nonferrous Metals Science and Engineering, 2019, 10(1): 34-40. | |
16 | 王新东. 基于冶金流程工程学的钢铁流程工程设计[J]. 钢铁, 2023, 58(11): 10-18, 60. |
WANG Xindong. Design of steel process engineering based on metallurgical process engineering[J]. Iron & Steel, 2023, 58(11): 10-18, 60. | |
17 | 朱仁良. 关于炼铁低碳冶炼的思考[J]. 炼铁, 2018, 37(5): 8-11. |
ZHU Renliang. Discussion on low carbon ironmaking[J]. Ironmaking, 2018, 37(5): 8-11. | |
18 | 上官方钦, 殷瑞钰, 崔志峰, 等. 钢铁工业低碳化发展[J]. 钢铁, 2023, 58(11): 120-131. |
SHANGGUAN Fangqin, YIN Ruiyu, CUI Zhifeng, et al. Low-carbon development of steel industry[J]. Iron & Steel, 2023, 58(11): 120-131. | |
19 | 张建良, 刘征建, 李克江, 等. “双碳” 战略下我国炼铁工业的绿色低碳发展[J]. 炼铁, 2022, 41(5): 1-10. |
ZHANG Jianliang, LIU Zhengjian, LI Kejiang, et al. Green and low-carbon development of China’s ironmaking industry under the “carbon peaking and carbon neutrality” strategy[J]. Ironmaking, 2022, 41(5): 1-10. | |
20 | 刘清梅, 张福明. 钢铁工业减碳与CO2资源化利用技术的研究进展[J]. 钢铁, 2024, 59(2): 13-24. |
LIU Qingmei, ZHANG Fuming. Research progress of carbon reduction and CO2 resource technology utilization in iron and steel industry[J]. Iron & Steel, 2024, 59(2): 13-24. | |
21 | 齐渊洪, 高建军, 周渝生, 等. 氧气高炉的发展现状及关键技术问题分析[C]. 2011年全国冶金节能减排与低碳技术发展研讨, 唐山, 2011, 201175-81. |
QI Yuanhong, GAO Jianjun, ZHOU Yusheng, et al. The Current Development and Key Technical Problems of Oxygen Blast Furnace[C]. Tangshan: the 2011 National Metallurgical Energy Conservation And Emission Reduction And Low-Carbon Technology Development Research, 2011, 201175-81. | |
22 | 张卫国, 张宗旺, 徐润生, 等. 富氢气体喷吹对高炉冶炼工况的影响规律[J]. 钢铁研究学报, 2023, 35(9): 1065-1073. |
ZHANG Weiguo, ZHANG Zongwang, XU Runsheng, et al. Effect of hydrogen-rich gas injection on smelting operation of blast furnace[J]. Journal of Iron and Steel Research, 2023, 35(9): 1065-1073. | |
23 | 王新东, 郄亚娜, 吕庆, 等. 高炉喷吹不同富氢介质节能减排潜能的分析与比较[J]. 钢铁, 2023, 58(10): 34-41. |
WANG Xindong, Yana QIE, Qing LYU, et al. Analysis and comparison of energy saving and emission reduction of blast furnace injection with different hydrogen-rich mediums[J]. Iron & Steel, 2023, 58(10): 34-41. | |
24 | YILMAZ Can, WENDELSTORF Jens, TUREK Thomas. Modeling and simulation of hydrogen injection into a blast furnace to reduce carbon dioxide emissions[J]. Journal of Cleaner Production, 2017, 154: 488-501. |
25 | CHEN Yanbiao, ZUO Haibin. Review of hydrogen-rich ironmaking technology in blast furnace[J]. Ironmaking & Steelmaking, 2021, 48(6): 749-768. |
26 | SHAO Lei, ZHANG Xiaonan, ZHAO Chenxi, et al. Computational analysis of hydrogen reduction of iron oxide pellets in a shaft furnace process[J]. Renewable Energy, 2021, 179: 1537-1547. |
27 | 唐珏, 储满生, 李峰, 等. 我国氢冶金发展现状及未来趋势[J]. 河北冶金, 2020(8): 1-6, 51. |
TANG Jue, CHU Mansheng, LI Feng, et al. Development status and future trend of hydrogen metallurgy in China[J]. Hebei Metallurgy, 2020(8): 1-6, 51. | |
28 | NWACHUKWU C M, WANG C, WETTERLUND E. Exploring the role of forest biomass in abating fossil CO2 emissions in the iron and steel industry—The case of Sweden[J]. Applied Energy, 2021: DOI:10.1016/J.APENERGY.2021.116558. |
29 | 卢立金, 王海风, 王锋, 等. 氢冶金工艺技术发展现状及应用[J]. 钢铁, 2024, 59(3): 183-196. |
LU Lijin, WANG Haifeng, WANG Feng, et al. Development status and application of hydrogen metallurgy technology[J]. Iron & Steel, 2024, 59(3): 183-196. | |
30 | 徐可可. 姜涛: 利用焦炉煤气生产直接还原铁是我国现阶段最可行的氢冶金路径[N]. 中国冶金报, 2023-11-14(2). |
XU keke. Jiang Tao: Using coke oven gas to produce directly reduced iron is currently the most feasible hydrogen metallurgical path in China[N]. China Metallurgical News, 2023-11-14(2). | |
31 | 鲁雄刚, 张玉文, 祝凯, 等. 氢冶金的发展历程与关键问题[J]. 自然杂志, 2022, 44(4): 251-266. |
LU Xionggang, ZHANG Yuwen, ZHU Kai, et al. Development and key problems of hydrogen metallurgy[J]. Chinese Journal of Nature, 2022, 44(4): 251-266. | |
32 | 张华, 张卫国, 张宗旺, 等. 焦炉煤气喷吹对高炉热量分布及冶炼参数的影响[J]. 冶金能源, 2023, 42(3): 3-8. |
ZHANG Hua, ZHANG Weiguo, ZHANG Zongwang, et al. Influence of coke oven gas injection on blast furnace heat distribution and smelting parameters[J]. Energy for Metallurgical Industry, 2023, 42(3): 3-8. | |
33 | 世界钢铁发展研究院,中国金属学会. 氢冶金技术发展蓝皮书[R]. 2023年氢冶金国际研讨会,崇礼, 2023. |
World Steel Development Research Institute, The Chinese Society for Metals. Blue Book on the Development of Hydrogen Metallurgy Technology[R]. 2023 International Symposum on Hydrogen Metallurgy, Chongli, 2023. | |
34 | 朱荣, 魏光升, 张洪金. 近零碳排电弧炉炼钢工艺技术研究及展望[J]. 钢铁, 2022, 57(10): 1-9. |
ZHU Rong, WEI Guangsheng, ZHANG Hongjin. Research and prospect of EAF steelmaking with near-zero carbon emissions[J]. Iron & Steel, 2022, 57(10): 1-9. | |
35 | WANG Lei, GUO Peimin, KONG Lingbing, et al. Industrial application prospects and key issues of the pure-hydrogen reduction process[J]. International Journal of Minerals, Metallurgy and Materials, 2022, 29(10): 1922-1931. |
36 | PANG Zhuogang, BU Jiajia, YUAN Yaqiang, et al. The low-carbon production of iron and steel industry transition process in China[J]. Steel Research International, 2024, 95(3). DOI:10.1002/srin.202300500 . |
37 | 赵志龙. 绿色低碳氢冶金技术进展及前景展望[J]. 绿色矿冶, 2023, 39(5): 1-8. |
ZHAO Zhilong. Progress and prospect of green low hydrocarbon metallurgy technology[J]. Sustainable Mining and Metallurgy, 2023, 39(5): 1-8. | |
38 | 余天门. 河钢:“氢”启未来,领跑绿色发展新赛道[N]. 中国冶金报, 2023-09-19(1). |
YU Tianmen. HBIS: Hydrogen inspires the future, leading the new track of green development[N]. China Metallurgical News, 2023-09-19(1). | |
39 | GUO Lei, BAO Qipeng, GAO Jintao, et al. A review on prevention of sticking during fluidized bed reduction of fine iron ore[J]. ISIJ International, 2020, 60(1): 1-17. |
40 | 方觉. 非高炉炼铁工艺与理论[M]. 2版. 北京: 冶金工业出版社, 2010. |
FANG Jue. Non-blast furnace ironmaking process and theory[M]. Beijing: Metallurgical Industry Press, 2010. | |
41 | SUN Minmin, PANG Keliang, JIANG Zhe, et al. Development and problems of fluidized bed ironmaking process: An overview[J]. Journal of Sustainable Metallurgy, 2023, 9(4): 1399-1416. |
42 | WHIPP R H, 邓英. 委内瑞拉FIOR直接还原厂的生产及FIOR团块的海运和应用[J]. 烧结球团, 1987, 12(2): 68-77. |
WHIPP R H, DENG Ying. Production of FIOR Direct Reduction Plant in Venezuela and FIOR Agglomerates’ Shipping and Application[J]. Sintering and Pelletizing, 1987, 12(2): 68-77. | |
43 | 胡俊鸽, 周文涛, 赵小燕. 铁矿粉还原用流化床类型及其应用[J]. 世界钢铁, 2009, 9(3): 1-5. |
HU Junge, ZHOU Wentao, ZHAO Xiaoyan. Types and applications of fluidized beds for iron ore powder reduction[J]. World Iron & Steel, 2009, 9(3): 1-5. | |
44 | Jean Paul Nepper, Sneyd Stuart, Stefan Tobias, 等. 奥图泰公司可持续的钢铁冶金技术[J]. 世界钢铁, 2013, 13(5): 32-38. |
NEPPER Jean Paul, SNEYD Stuart, STEFAN Tobias, et al. Outotec’s innovative technologies for sustainable iron and steelmaking[J]. World Iron & Steel, 2013, 13(5): 32-38. | |
45 | 杨悦. 浦项制铁HyREX工艺“剑指” 碳中和——在FINEX技术基础上创新开发,未来可以直接使用低品位铁矿,成本优势明显[N]. 中国冶金报, 2023-09-15(2). |
YANG Yue. HyREX process of Pohang Iron and Steel, the goal is carbon neutrality[J]. China Metallurgical News. 2023-09-15(2). |
[1] | SONG Xingfei, JIA Xin, AN Ping, HAN Zhennan, XU Guangwen. Development of science and technology in thermochemical reaction engineering [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3513-3533. |
[2] | JING Peiyu, ZHU Yu, SUN Jie, HUANG Wanni, GUO Yuying, WANG Yating, ZHENG Zhiyi, DING Wei. Analysis of drag reduction characteristics of water ring transportation in high viscosity oil horizontal pipeline [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 2996-3006. |
[3] | CHEN Fuqiang, ZHONG Zhaoping, QI Renzhi. Research progress on copper-based catalysts for electrochemical reduction of carbon dioxide to formic acid [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3051-3060. |
[4] | FENG Zhanxiong, ZHANG Chuang, LIU Dezheng, WANG Yun, MA Qiang, WANG Cheng. Effect of different atmosphere heat treatment on the oxygen reduction performance of Pt/C catalysts prepared by continuous pipeline microwave technology [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3080-3092. |
[5] | ZHOU Hao, WANG Xurui, ZHAO Huishuang, WEN Nini, SU Yaxin. Selective catalytic reduction of nitric oxide with propylene over CuCe-SAPO-34 catalysts under diesel engine exhaust [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3093-3099. |
[6] | DI Zichen, LEI Feixia, CHANG Chenggong, CHEN Wenhui, CHENG Fangqin. Evaluation of hydrocarbon resource utilization potential and low-carbon path in the coking industry [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2862-2871. |
[7] | LI Si, TAO Yiyue, XIAO Zhenchong, ZHANG Liang, LI Jun, ZHU Xun, LIAO Qiang. Electrochemical characteristics of the coupled system of thermally regenerative battery stack and electrochemical CO2 reduction cell [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2568-2575. |
[8] | LIU Shida, WANG Haiyan, HOU Shuandi, LIU Zhongsheng, LIAO Changjian, WANG Kuanling. Recent advances in safely efficient deep emission reduction, recovery and thermal oxidation of VOCs from petrochemical storage tanks in China [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 2063-2076. |
[9] | YAO Yuan, JING Hongquan, YIN Yuting, QI Shuailiang, WANG Yanyu. HOU Cuihong. Research status and suggestions of yellow hosphorus production technology by thermal processing under peak carbon dioxide emission and carbon neutrality [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 2104-2116. |
[10] | ZHOU Mingxian, YE Xiaozhou. Optimization of preferential lithium extraction from waste ternary lithium ion batteries by carbothermal reduction [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 2174-2182. |
[11] | GAO Fei, LIU Zhisong, PAN Keke, LIU Minmin, DAI Bin, DAN Jianming, YU Feng. Vermiculite-supported FeCe bimetallic catalyst for selective catalytic reduction of NO with CO [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1851-1862. |
[12] | WANG Kai, YE Dingding, ZHU Xun, YANG Yang, CHEN Rong, LIAO Qiang. Performance of electrochemical reduction of CO2 by superaerophilic copper foam electrode with nanowires [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1232-1240. |
[13] | ZHAO Ruiqiang, ZHOU Xin, NIU Bingxin. Construction of a coupled process integrating dissimilatory nitrate reduction and anaerobic ammonia oxidation/denitrification for wastewater treatment [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1593-1605. |
[14] | YIN Xiaoyun, LI Jing, LIN Dong, HU Jinyan, ZHANG Liang, JING Jiaqiang, KARIMOV Rinat M, SUN Jie. Effect of polyacrylamide on flow characteristics of highly viscous oil-water annular flow [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1157-1166. |
[15] | YANG Mengru, PENG Qin, CHANG Yulong, QIU Shuxing, ZHANG Jianbo, JIANG Xia. Research progress of carbon emission reduction technology with biochar replacing pulverized coal/coke for blast furnace ironmaking [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 490-500. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |