1 |
李晔,许文. 中国塑料制品市场分析与发展趋势[J]. 化学工业, 2021, 39(4): 37-43.
|
|
LI Ye, XU Wen. Market analysis and development trend of plastic of China[J]. Chemical Industry, 2021, 39(4): 37-43.
|
2 |
James Guo Sheng MOO, VEKSHA Andrei, Wen-Da OH, et al. Plastic derived carbon nanotubes for electrocatalytic oxygen reduction reaction: Effects of plastic feedstock and synthesis temperature[J]. Electrochemistry Communications, 2019, 101: 11-18.
|
3 |
KANG Jian, ZHOU Li, DUAN Xiaoguang, et al. Degradation of cosmetic microplastics via functionalized carbon nanosprings [J]. Matter, 2019, 1(3): 745-758.
|
4 |
ANUAR SHARUDDIN Shafferina Dayana, ABNISA Faisal, WAN DAUD Wan Mohd Ashri, et al. A review on pyrolysis of plastic wastes[J]. Energy Conversion and Management, 2016, 115: 308-326.
|
5 |
BAZARGAN Alireza, MCKAY Gordon. A review: Synthesis of carbon nanotubes from plastic wastes[J]. Chemical Engineering Journal, 2012, 195/196: 377-391.
|
6 |
Khalid Mahmood ZIA, BHATTI Haq Nawaz, AHMAD BHATTI Ijaz. Methods for polyurethane and polyurethane composites, recycling and recovery: A review[J]. Reactive and Functional Polymers, 2007, 67(8): 675-692.
|
7 |
HUANG Zhong, ZHENG Yangfan, ZHANG Haijun, et al. High-yield production of carbon nanotubes from waste polyethylene and fabrication of graphene-carbon nanotube aerogels with excellent adsorption capacity[J]. Journal of Materials Science & Technology, 2021, 94: 90-98.
|
8 |
GRAVES Katherine A, HIGGINS Luke J R, NAHIL Mohamad A, et al. Structural comparison of multi-walled carbon nanotubes produced from polypropylene and polystyrene waste plastics[J]. Journal of Analytical and Applied Pyrolysis, 2022, 161: 105396.
|
9 |
ZHANG Junhao, ZHANG Longmei, YANG Huan, et al. Sustainable processing of waste polypropylene to produce high yield valuable Fe/carbon nanotube nanocomposites[J]. CrystEngComm, 2014, 16(37): 8832-8840.
|
10 |
段培, 李海, 闫晓丽, 等. 液体介质等离子体电弧法制备纳米炭材料研究进展[J]. 人工晶体学报, 2017, 46(2): 251-260.
|
|
DUAN Pei, LI Hai, YAN Xiaoli, et al. Research progress on preparation of carbon nanomaterials by plasma discharge in liquid medium[J]. Journal of Synthetic Crystals, 2017, 46(2): 251-260.
|
11 |
SCOTT C D, AREPALLI S, NIKOLAEV P, et al. Growth mechanisms for single-wall carbon nanotubes in a laser-ablation process[J]. Applied Physics A, 2001, 72(5): 573-580.
|
12 |
满玉红. 定向多壁碳纳米管阵列的生长机理与可控制备研究[D]. 北京: 清华大学, 2011.
|
|
MAN Yuhong. Exploration on growth mechanism and controlled synthesis of aligned multi-walled carbon nanotube array[D]. Beijing: Tsinghua University, 2011.
|
13 |
冯建民. 安全化学气相法制备连续碳纳米管纤维[D]. 天津: 天津大学, 2012.
|
|
FENG Jianmin. Fabrication of continuous carbon nanotube fibers by a safe CVD method[D]. Tianjin: Tianjin University, 2012.
|
14 |
Clarence S YAH, IYUKE Sunny E, SIMATE Geoffrey S, et al. Continuous synthesis of multiwalled carbon nanotubes from xylene using the swirled floating catalyst chemical vapor deposition technique[J]. Journal of Materials Research, 2011, 26(5): 640-644.
|
15 |
ACOMB J C, WU C, WILLIAMS P T. The use of different metal catalysts for the simultaneous production of carbon nanotubes and hydrogen from pyrolysis of plastic feedstocks [J]. Appl Catal B, 2016, 180: 497-510.
|
16 |
GONG Jiang, LIU Jie, WAN Dong, et al. Catalytic carbonization of polypropylene by the combined catalysis of activated carbon with Ni2O3 into carbon nanotubes and its mechanism[J]. Applied Catalysis A: General, 2012, 449: 112-120.
|
17 |
ZHENG Yangfan, ZHANG Haijun, GE Shengtao, et al. Synthesis of carbon nanotube arrays with high aspect ratio via Ni-catalyzed pyrolysis of waste polyethylene[J]. Nanomaterials, 2018, 8(7): 556.
|
18 |
YAO Dingding, YANG Haiping, HU Qiang, et al. Carbon nanotubes from post-consumer waste plastics: Investigations into catalyst metal and support material characteristics[J]. Applied Catalysis B: Environmental, 2021, 280: 119413.
|
19 |
ZHANG Haijun, HABA Minori, OKUMURA Mitsutaka, et al. Novel formation of Ag/Au bimetallic nanoparticles by physical mixture of monometallic nanoparticles in dispersions and their application to catalysts for aerobic glucose oxidation[J]. Langmuir, 2013, 29(33): 10330-10339.
|
20 |
ZHANG Haijun, OKUNI Jun, TOSHIMA Naoki. One-pot synthesis of Ag-Au bimetallic nanoparticles with Au shell and their high catalytic activity for aerobic glucose oxidation[J]. Journal of Colloid and Interface Science, 2011, 354(1): 131-138.
|
21 |
DI Jiangtao, YONG Zhenzhong, YANG Xiaojie, et al. Structural and morphological dependence of carbon nanotube arrays on catalyst aggregation[J]. Applied Surface Science, 2011, 258(1): 13-18.
|
22 |
ABOUL-ENEIN Ateyya A, AWADALLAH Ahmed E. Production of nanostructured carbon materials using Fe-Mo/MgO catalysts via mild catalytic pyrolysis of polyethylene waste[J]. Chemical Engineering Journal, 2018, 354: 802-816.
|
23 |
陆超. 聚合物的热降解与催化降解[D]. 苏州: 苏州大学, 2015.
|
|
LU Chao. Pyrolytic and catalytic degradation of polymers[D]. Suzhou: Soochow University, 2015.
|
24 |
JOURDAIN Vincent, BICHARA Christophe. Current understanding of the growth of carbon nanotubes in catalytic chemical vapour deposition[J]. Carbon, 2013, 58: 2-39.
|
25 |
VINCIGUERRA Vincenzo, BUONOCORE Francesco, PANZERA Giuseppe, et al. Growth mechanisms in chemical vapour deposited carbon nanotubes[J]. Nanotechnology, 2003, 14(6): 655-660.
|
26 |
XU Dan, XIONG Yuanquan, YE Jiandong, et al. Performances of syngas production and deposited coke regulation during co-gasification of biomass and plastic wastes over Ni/γ-Al2O3 catalyst: Role of biomass to plastic ratio in feedstock[J]. Chemical Engineering Journal, 2020, 392: 123728.
|
27 |
GONG Jiang, LIU Jie, JIANG Zhiwei, et al. Effect of the added amount of organically-modified montmorillonite on the catalytic carbonization of polypropylene into cup-stacked carbon nanotubes[J]. Chemical Engineering Journal, 2013, 225: 798-808.
|
28 |
SAITO Yahachi, YOSHIKAWA Tadanobu, BANDOW Shunji, et al. Interlayer spacings in carbon nanotubes[J]. Physical Review B, 1993, 48(3): 1907-1909.
|
29 |
ZHANG Silong, SHI Changliang, NIE Yanhe, et al. Separation experiment and mechanism study on PVC microplastics removal from aqueous solutions using high-gradient magnetic filter[J]. Journal of Water Process Engineering, 2023, 51: 103495.
|
30 |
APUL Onur Guven, KARANFIL Tanju. Adsorption of synthetic organic contaminants by carbon nanotubes: A critical review[J]. Water Research, 2015, 68: 34-55.
|
31 |
MA Yingzhi, ZHENG Dafeng, MO Zhenye, et al. Magnetic lignin-based carbon nanoparticles and the adsorption for removal of methyl orange[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 559: 226-234.
|