1 |
CHEN Wanqi, TANG Haoyue, HE Li, et al. Co-effect assessment on regional air quality: A perspective of policies and measures with greenhouse gas reduction potential[J]. The Science of the Total Environment, 2022, 851: 158119.
|
2 |
ZHANG Yixiang, FU Bowen. Impact of China’s establishment of ecological civilization pilot zones on carbon dioxide emissions[J]. Journal of Environmental Management, 2023, 325: 116652.
|
3 |
DAVIS Steven J, CALDEIRA Ken, Damon MATTHEWS H. Future CO2 emissions and climate change from existing energy infrastructure[J]. Science, 2010, 329(5997): 1330-1333.
|
4 |
YANG Yang, XU Wenqing, WANG Yan, et al. Progress of CCUS technology in the iron and steel industry and the suggestion of the integrated application schemes for China[J]. Chemical Engineering Journal, 2022, 450: 138438.
|
5 |
王秋华, 吴嘉帅, 张卫风. 碱性工业固废矿化封存二氧化碳研究进展[J]. 化工进展, 2023, 42(3): 1572-1582.
|
|
WANG Qiuhua, WU Jiashuai, ZHANG Weifeng. Research progress of alkaline industrial solid wastes mineralization for carbon dioxide sequestration[J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1572-1582.
|
6 |
MONTEIRO Juliana, ROUSSANALY Simon. CCUS scenarios for the cement industry: Is CO2 utilization feasible?[J]. Journal of CO2 Utilization, 2022, 61: 102015.
|
7 |
SEIFRITZ W. CO2 disposal by means of silicates[J]. Nature, 1990, 345(6275): 486.
|
8 |
LI Yingjie, SUN Rongyue, LIU Changtian, et al. CO2 capture by carbide slag from chlor-alkali plant in calcination/carbonation cycles[J]. International Journal of Greenhouse Gas Control, 2012, 9: 117-123.
|
9 |
CHEN Zhimin, LI Rui, ZHENG Xianming, et al. Carbon sequestration of steel slag and carbonation for activating RO phase[J]. Cement and Concrete Research, 2021, 139: 106271.
|
10 |
LUO Zhongtao, WANG Yu, YANG Guangjun, et al. Effect of curing temperature on carbonation behavior of steel slag compacts[J]. Construction and Building Materials, 2021, 291: 123369.
|
11 |
QIN Ling, GAO Xiaojian. Recycling of waste autoclaved aerated concrete powder in Portland cement by accelerated carbonation[J]. Waste Management, 2019, 89: 254-264.
|
12 |
赵雯涵, 吴水木, 李英杰. 钙基工业固废循环捕集CO2性能研究进展[J]. 煤炭学报, 2022, 47(11): 3926-3935.
|
|
ZHAO Wenhan, WU Shuimu, LI Yingjie. Research progress on CO2 capture performance of calcium-based industrial solid waste recycling[J]. Journal of China Coal Society, 2022, 47(11): 3926-3935.
|
13 |
李文秀, 杨宇航, 黄艳, 等. 二氧化碳矿化高钙基固废制备微细碳酸钙研究进展[J]. 化工进展, 2023, 42(4): 2047-2057.
|
|
LI Wenxiu, YANG Yuhang, HUANG Yan, et al. Preparation of ultrafine calcium carbonate by CO2 mineralization using high calcium-based solid waste[J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2047-2057.
|
14 |
GHOULEH Zaid, GUTHRIE Roderick I L, SHAO Yixin. Production of carbonate aggregates using steel slag and carbon dioxide for carbon-negative concrete[J]. Journal of CO2 Utilization, 2017, 18: 125-138.
|
15 |
MA Zhuohui, LIAO H, WANG Li, et al. Effects of iron/silicon/magnesium/aluminum on CaO carbonation of CO2 in steel slag-based building materials during carbonation curing[J]. Construction and Building Materials, 2021, 298: 123889.
|
16 |
任国宏, 廖洪强, 高宏宇, 等. 粉煤灰-电石渣制浆矿化的固碳增强特性[J]. 材料导报, 2019, 33(21): 3556-3560.
|
|
REN Guohong, LIAO Hongqiang, GAO Hongyu, et al. Carbon dioxide-fixing and compression strength enhancing characteristics of mineralized immobilization of fly ash-calcium carbide slag slurry[J]. Materials Reports, 2019, 33(21): 3556-3560.
|
17 |
MIAO Endong, ZHENG Xufan, XIONG Zhuo, et al. Kinetic modeling of direct aqueous mineral carbonation using carbide slag in a stirred tank reactor[J]. Fuel, 2022, 315: 122837.
|
18 |
LIU Lili, JI Yongsheng, GAO Furong, et al. Study on high-efficiency CO2 absorption by fresh cement paste[J]. Construction and Building Materials, 2021, 270: 121364.
|
19 |
LI Yisha, MEHDIZADEH Hamideh, MO Kim Hung, et al. Co-utilization of aqueous carbonated basic oxygen furnace slag (BOFS) and carbonated filtrate in cement pastes considering reaction duration effect[J]. Cement and Concrete Composites, 2023, 138: 104988.
|
20 |
HALMANN M, FREI A, STEINFELD A. Magnesium production by the pidgeon process involving dolomite calcination and MgO silicothermic reduction: thermodynamic and environmental analyses[J]. Industrial & Engineering Chemistry Research, 2008, 47(7): 2146-2154.
|
21 |
唐洋洋, 李林波, 王超, 等. 镁渣资源化利用新进展[J]. 现代化工, 2020, 40(12): 63-67.
|
|
TANG Yangyang, LI Linbo, WANG Chao, et al. New progress in reutilization of magnesium slag[J]. Modern Chemical Industry, 2020, 40(12): 63-67.
|
22 |
XU Jilei, LIU Jinhui, GUO Dong, et al. Mechanism of slag pellets sticking on the wall of reduction pot in magnesium production by Pidgeon process[J]. Journal of Magnesium and Alloys, 2022: https://doi.org/10.1016/j.jma.2022.10.016.
|
23 |
刘浪, 阮仕山, 方治余, 等. 镁渣的改性及其在矿山充填领域的应用探索[J]. 煤炭学报, 2021, 46(12): 3833-3845.
|
|
LIU Lang, RUAN Shishan, FANG Zhiyu, et al. Modification of magnesium slag and its application in the field of mine filling[J]. Journal of China Coal Society, 2021, 46(12): 3833-3845.
|
24 |
孙伟吉, 刘浪, 徐龙华, 等. 改性镁渣基矿用复合胶凝材料的水化性能[J]. 中南大学学报(自然科学版), 2022, 53(10): 4057-4070.
|
|
SUN Weiji, LIU Lang, XU Longhua, et al. Hydration properties of modified magnesium slag-based composite cementitious materials for mining[J]. Journal of Central South University (Science and Technology), 2022, 53(10): 4057-4070.
|
25 |
RUAN Shishan, LIU Lang, ZHU Mengbo, et al. Application of desulfurization gypsum as activator for modified magnesium slag-fly ash cemented paste backfill material[J]. Science of The Total Environment, 2023, 869: 161631.
|
26 |
WANG Dan, CHANG Jun. Comparison on accelerated carbonation of β-C2S, Ca(OH)2, and C4AF: Reaction degree, multi-properties, and products[J]. Construction and Building Materials, 2019, 224: 336-347.
|
27 |
WANG Dan, FANG Yanfeng, ZHANG Yangyang, et al. Changes in mineral composition, growth of calcite crystal, and promotion of physico-chemical properties induced by carbonation of β-C2S[J]. Journal of CO2 Utilization, 2019, 34: 149-162.
|
28 |
伊元荣, 马忠乐, 杜昀聪, 等. 不同温度下精炼渣碳酸化微观结构变化[J]. 钢铁研究学报, 2021, 33(2): 127-135.
|
|
YI Yuanrong, MA Zhongle, DU Yuncong, et al. Microstructure changes of refining slag under carbonization at different reaction temperatures[J]. Journal of Iron and Steel Research, 2021, 33(2): 127-135.
|
29 |
LI Yemei, PEI Silu, PAN Shuyuan, et al. Carbonation and utilization of basic oxygen furnace slag coupled with concentrated water from electrodeionization[J]. Journal of CO2 Utilization, 2018, 25: 46-55.
|
30 |
METZ V, GANOR J. Stirring effect on kaolinite dissolution rate[J]. Geochimica et Cosmochimica Acta, 2001, 65(20): 3475-3490.
|
31 |
DUAN Zhenhao, SUN Rui. An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar[J]. Chemical Geology, 2003, 193(3/4): 257-271.
|
32 |
LI Yemei, PEI Silu, PAN Shuyuan, et al. Carbonation and utilization of basic oxygen furnace slag coupled with concentrated water from electrodeionization[J]. Journal of CO2 Utilization, 2018, 25: 46-55.
|
33 |
DROUET E, POYET S, LE BESCOP P, et al. Carbonation of hardened cement pastes: Influence of temperature[J]. Cement and Concrete Research, 2019, 115: 445-459.
|
34 |
JI Long, YU Hai, WANG Xiaolong, et al. CO2 sequestration by direct mineralisation using fly ash from Chinese Shenfu coal[J]. Fuel Processing Technology, 2017, 156: 429-437.
|
35 |
TAN Yicheng, LIU Zhichao, WANG Fazhou. Effect of temperature on the carbonation behavior of γ-C2S compacts[J]. Cement and Concrete Composites, 2022, 133: 104652.
|
36 |
沈鹤鸣, 吴灿彬, 李志华, 等. 氢氧化钙的固碳功能性研究—CO2浓度与碳化时间的影响[J]. 功能材料, 2020, 51(1): 1115-1119.
|
|
SHEN Heming, WU Canbin, LI Zhihua, et al. Carbon sequestration functionality of calcium hydroxide—Effect of CO2 concentration and carbonation time[J]. Journal of Functional Materials, 2020, 51(1): 1115-1119.
|
37 |
郑鹏, 李蔚玲, 郭亚飞, 等. 鼓泡床中电石渣加速碳酸化分析与响应面优化[J]. 化工进展, 2022, 41(3): 1528-1538.
|
|
ZHENG Peng, LI Weiling, GUO Yafei, et al. Analysis of carbide slag accelerated carbonation in bubble column and response surface optimization[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1528-1538.
|
38 |
ZHANG Yunhua, WANG Ruoxin, LIU Zhiyi, et al. A novel carbonate binder from waste hydrated cement paste for utilization of CO2 [J]. Journal of CO2 Utilization, 2019, 32: 276-280.
|
39 |
RAUTARAY Debabrata, SAINKAR S R, SASTRY Murali. Thermally evaporated aerosol OT thin films as templates for the room temperature synthesis of aragonite crystals[J]. Chemistry of Materials, 2003, 15(14): 2809-2814.
|
40 |
CHEN Z X, CHU S H, LEE Y S, et al. Coupling effect of γ-dicalcium silicate and slag on carbonation resistance of low carbon materials[J]. Journal of Cleaner Production, 2020, 262: 121385.
|
41 |
ASHRAF Warda, OLEK Jan. Carbonation behavior of hydraulic and non-hydraulic calcium silicates: Potential of utilizing low-lime calcium silicates in cement-based materials[J]. Journal of Materials Science, 2016, 51(13): 6173-6191.
|
42 |
CHEN Z X, CHU S H, ISHAK S, et al. Roles of particle packing and water coating thickness in carbonation and strength of γ-dicalcium silicate-based low carbon materials[J]. Journal of Cleaner Production, 2022, 358: 131735.
|
43 |
WEI Xinlei, NI Wen, ZHANG Siqi, et al. Influence of the key factors on the performance of steel slag-desulphurisation gypsum-based hydration-carbonation materials[J]. Journal of Building Engineering, 2022, 45: 103591.
|
44 |
ZHANG Jiake, SHI Caijun, LI Yake, et al. Performance enhancement of recycled concrete aggregates through carbonation[J]. Journal of Materials in Civil Engineering, 2015, 27(11): 04015029.
|
45 |
LEE Seung-Woo, KIM Yong-Jae, LEE Yun-Hee, et al. Behavior and characteristics of amorphous calcium carbonate and calcite using CaCO3 film synthesis[J]. Materials & Design, 2016, 112: 367-373.
|
46 |
MO Liwu, HAO Yuanyuan, LIU Yunpeng, et al. Preparation of calcium carbonate binders via CO2 activation of magnesium slag[J]. Cement and Concrete Research, 2019, 121: 81-90.
|
47 |
WANG Dan, XIONG Cang, LI Wenzheng, et al. Growth of calcium carbonate induced by accelerated carbonation of tricalcium silicate[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(39): 14718-14731.
|
48 |
CHANG Jun, JIANG Ting, CUI Kai. Influence on compressive strength and CO2 capture after accelerated carbonation of combination β-C2S with γ-C2S[J]. Construction and Building Materials, 2021, 312: 125359.
|