Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (4): 1923-1933.DOI: 10.16085/j.issn.1000-6613.2023-0613
• Materials science and technology • Previous Articles
LI Ping1(), CHEN Xiule1, ZHANG Qiang2, NIAN Tengfei1, WANG Yuxing2, WANG Meng3
Received:
2023-04-16
Revised:
2023-05-04
Online:
2024-05-13
Published:
2024-04-15
Contact:
LI Ping
李萍1(), 陈修乐1, 张强2, 念腾飞1, 王育兴2, 王盟3
通讯作者:
李萍
作者简介:
李萍(1972—),女,博士生导师,研究方向为环保功能型沥青材料。E-mail:lzlgliping@126.com。
基金资助:
CLC Number:
LI Ping, CHEN Xiule, ZHANG Qiang, NIAN Tengfei, WANG Yuxing, WANG Meng. Optimization of compounding ratio of fume-suppressing asphalt and evaluation of its effect of fume suppression[J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1923-1933.
李萍, 陈修乐, 张强, 念腾飞, 王育兴, 王盟. 抑烟沥青复掺配比优化及抑烟效果评价[J]. 化工进展, 2024, 43(4): 1923-1933.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0613
指标 | 测试结果 | 技术 要求 | |
---|---|---|---|
SK | ZH | ||
针入度(25℃)/0.1mm | 83 | 84 | 80~100 |
延度(10℃)/cm | 56 | 58 | ≥35 |
软化点/℃ | 47.9 | 46.8 | 42~52 |
RTFOT后残留物 | |||
质量损失/% | -0.03 | -0.53 | ≤±0.4 |
残留针入度比/% | 60.8 | 65.2 | ≥57 |
残留延度/cm | 11.8 | 12 | ≥8 |
指标 | 测试结果 | 技术 要求 | |
---|---|---|---|
SK | ZH | ||
针入度(25℃)/0.1mm | 83 | 84 | 80~100 |
延度(10℃)/cm | 56 | 58 | ≥35 |
软化点/℃ | 47.9 | 46.8 | 42~52 |
RTFOT后残留物 | |||
质量损失/% | -0.03 | -0.53 | ≤±0.4 |
残留针入度比/% | 60.8 | 65.2 | ≥57 |
残留延度/cm | 11.8 | 12 | ≥8 |
抑烟剂种类 | 掺量/% | |||
---|---|---|---|---|
有机蒙脱土 | 6 | 8 | 10 | 12 |
无机蒙脱土 | 6 | 8 | 10 | 12 |
活性炭粉 | 1 | 2 | 3 | 4 |
三聚氰胺 | 1 | 2 | 3 | 4 |
Al(OH)3 | 4 | 6 | 8 | 10 |
Mg(OH)2 | 4 | 6 | 8 | 10 |
聚丙烯纤维 | 1 | 2 | 3 | 4 |
聚苯乙烯 | 1 | 2 | 3 | 4 |
电气石粉(325目) | 12 | 14 | 16 | 18 |
电气石粉(800目) | 12 | 14 | 16 | 18 |
电气石粉(1250目) | 12 | 14 | 16 | 18 |
电气石粉(2000目) | 12 | 14 | 16 | 18 |
电气石粉(5000目) | 12 | 14 | 16 | 18 |
电气石粉(10000目) | 12 | 14 | 16 | 18 |
抑烟剂种类 | 掺量/% | |||
---|---|---|---|---|
有机蒙脱土 | 6 | 8 | 10 | 12 |
无机蒙脱土 | 6 | 8 | 10 | 12 |
活性炭粉 | 1 | 2 | 3 | 4 |
三聚氰胺 | 1 | 2 | 3 | 4 |
Al(OH)3 | 4 | 6 | 8 | 10 |
Mg(OH)2 | 4 | 6 | 8 | 10 |
聚丙烯纤维 | 1 | 2 | 3 | 4 |
聚苯乙烯 | 1 | 2 | 3 | 4 |
电气石粉(325目) | 12 | 14 | 16 | 18 |
电气石粉(800目) | 12 | 14 | 16 | 18 |
电气石粉(1250目) | 12 | 14 | 16 | 18 |
电气石粉(2000目) | 12 | 14 | 16 | 18 |
电气石粉(5000目) | 12 | 14 | 16 | 18 |
电气石粉(10000目) | 12 | 14 | 16 | 18 |
运算参数 | 数值 |
---|---|
初始种群数 | 100 |
交叉概率 | 0.4 |
变异概率 | 0.05 |
最大迭代次数 | 200 |
运算参数 | 数值 |
---|---|
初始种群数 | 100 |
交叉概率 | 0.4 |
变异概率 | 0.05 |
最大迭代次数 | 200 |
抑烟沥青种类 | 针入度/0.1mm | 延度(10℃)/cm | 软化点/℃ | 抑烟率/% |
---|---|---|---|---|
电气石(325目)-12% | 75.3 | 37.4 | 46.9 | 25.5 |
电气石(325目)-14% | 73.6 | 35.7 | 47.1 | 26.2 |
电气石(325目)-16% | 72.7 | 33.4 | 47.3 | 38.5 |
电气石(325目)-18% | 71.0 | 30.5 | 47.5 | 34.4 |
电气石(800目)-12% | 73.7 | 34.8 | 45.8 | 46.7 |
电气石(800目)-14% | 72.5 | 32.8 | 46.7 | 61.1 |
电气石(800目)-16% | 70.8 | 29.1 | 47.1 | 78.1 |
电气石(800目)-18% | 68.4 | 26.8 | 47.4 | 71.8 |
电气石(1250目)-12% | 73.3 | 33.0 | 45.0 | 29.3 |
电气石(1250目)-14% | 71.3 | 31.2 | 45.5 | 32.3 |
电气石(1250目)-16% | 69.2 | 28.0 | 46.6 | 84.6 |
电气石(1250目)-18% | 67.8 | 26.2 | 47.0 | 76.8 |
电气石(2000目)-12% | 76.9 | 35.2 | 46.9 | 58.3 |
电气石(2000目)-14% | 76.2 | 33.9 | 47.1 | 59.5 |
电气石(2000目)-16% | 75.4 | 32.4 | 47.4 | 91.3 |
电气石(2000目)-18% | 73.4 | 29.9 | 48.1 | 86.2 |
电气石(5000目)-12% | 83.2 | 36.0 | 47.7 | 63.7 |
电气石(5000目)-14% | 82.6 | 34.8 | 47.8 | 72.3 |
电气石(5000目)-16% | 80.9 | 33.6 | 47.9 | 86.2 |
电气石(5000目)-18% | 76.5 | 31.2 | 48.3 | 58.5 |
电气石(10000目)-12% | 71 | 34.9 | 46.4 | 40.3 |
电气石(10000目)-14% | 71.2 | 33.6 | 46.9 | 63.7 |
电气石(10000目)-16% | 69.1 | 29.5 | 47.8 | 90.2 |
电气石(10000目)-18% | 67.6 | 28.7 | 48.4 | 88.7 |
有机蒙脱土-6% | 81.8 | 39.3 | 49.1 | 84.9 |
有机蒙脱土-8% | 83.9 | 37.7 | 52.0 | 86.4 |
有机蒙脱土-10% | 86.3 | 37.3 | 55.6 | 97.6 |
有机蒙脱土-12% | 88.5 | 35.2 | 62.2 | 88.2 |
无机蒙脱土-6% | 83.7 | 40.0 | 49.1 | 41.6 |
无机蒙脱土-8% | 82.2 | 42.1 | 47.7 | 57.3 |
无机蒙脱土-10% | 79.8 | 37.9 | 48.2 | 85.6 |
无机蒙脱土-12% | 78.9 | 35.4 | 48.7 | 58.2 |
聚丙烯-1% | 53.9 | 27.1 | 48.8 | 48.6 |
聚丙烯-2% | 58.2 | 27.9 | 48.1 | 31.8 |
聚丙烯-3% | 61.0 | 31.2 | 48.1 | 24.9 |
聚丙烯-4% | 59.3 | 31.6 | 48.8 | 35.7 |
聚苯乙烯-1% | 80.7 | 76.0 | 46.2 | 70.4 |
聚苯乙烯-2% | 73.9 | 27.7 | 47.1 | 40.5 |
聚苯乙烯-3% | 69.2 | 17.5 | 47.6 | 43.1 |
聚苯乙烯-4% | 47.7 | 9.9 | 50.4 | 79.4 |
Mg(OH)2-6% | 70.5 | 32.8 | 49.2 | 53.1 |
Mg(OH)2-8% | 73.7 | 27.9 | 51.1 | 66.2 |
Mg(OH)2-10% | 68.3 | 24.6 | 52.8 | 88.7 |
Mg(OH)2-12% | 66.3 | 24.0 | 54.1 | 47.8 |
Al(OH)3-6% | 76.8 | 35.0 | 46.2 | 33.8 |
Al(OH)3-8% | 75.2 | 25.7 | 47.1 | 38.0 |
Al(OH)3-10% | 73.1 | 23.5 | 47.6 | 75.7 |
Al(OH)3-12% | 72.7 | 20.8 | 50.4 | 71.9 |
C-1% | 68.1 | 36.0 | 45.6 | 83.4 |
C-2% | 58.6 | 27.7 | 47.1 | 29.4 |
C-3% | 61.2 | 17.5 | 47.6 | 83.0 |
C-4% | 56.8 | 9.9 | 50.4 | 72.6 |
三聚氰胺-1% | 80.9 | 26.0 | 46.2 | 53.6 |
三聚氰胺-2% | 79.9 | 17.7 | 48.9 | 45.3 |
三聚氰胺-3% | 81.8 | 15.5 | 49.7 | 15.7 |
三聚氰胺-4% | 83.6 | 11.9 | 50.4 | 87.8 |
抑烟沥青种类 | 针入度/0.1mm | 延度(10℃)/cm | 软化点/℃ | 抑烟率/% |
---|---|---|---|---|
电气石(325目)-12% | 75.3 | 37.4 | 46.9 | 25.5 |
电气石(325目)-14% | 73.6 | 35.7 | 47.1 | 26.2 |
电气石(325目)-16% | 72.7 | 33.4 | 47.3 | 38.5 |
电气石(325目)-18% | 71.0 | 30.5 | 47.5 | 34.4 |
电气石(800目)-12% | 73.7 | 34.8 | 45.8 | 46.7 |
电气石(800目)-14% | 72.5 | 32.8 | 46.7 | 61.1 |
电气石(800目)-16% | 70.8 | 29.1 | 47.1 | 78.1 |
电气石(800目)-18% | 68.4 | 26.8 | 47.4 | 71.8 |
电气石(1250目)-12% | 73.3 | 33.0 | 45.0 | 29.3 |
电气石(1250目)-14% | 71.3 | 31.2 | 45.5 | 32.3 |
电气石(1250目)-16% | 69.2 | 28.0 | 46.6 | 84.6 |
电气石(1250目)-18% | 67.8 | 26.2 | 47.0 | 76.8 |
电气石(2000目)-12% | 76.9 | 35.2 | 46.9 | 58.3 |
电气石(2000目)-14% | 76.2 | 33.9 | 47.1 | 59.5 |
电气石(2000目)-16% | 75.4 | 32.4 | 47.4 | 91.3 |
电气石(2000目)-18% | 73.4 | 29.9 | 48.1 | 86.2 |
电气石(5000目)-12% | 83.2 | 36.0 | 47.7 | 63.7 |
电气石(5000目)-14% | 82.6 | 34.8 | 47.8 | 72.3 |
电气石(5000目)-16% | 80.9 | 33.6 | 47.9 | 86.2 |
电气石(5000目)-18% | 76.5 | 31.2 | 48.3 | 58.5 |
电气石(10000目)-12% | 71 | 34.9 | 46.4 | 40.3 |
电气石(10000目)-14% | 71.2 | 33.6 | 46.9 | 63.7 |
电气石(10000目)-16% | 69.1 | 29.5 | 47.8 | 90.2 |
电气石(10000目)-18% | 67.6 | 28.7 | 48.4 | 88.7 |
有机蒙脱土-6% | 81.8 | 39.3 | 49.1 | 84.9 |
有机蒙脱土-8% | 83.9 | 37.7 | 52.0 | 86.4 |
有机蒙脱土-10% | 86.3 | 37.3 | 55.6 | 97.6 |
有机蒙脱土-12% | 88.5 | 35.2 | 62.2 | 88.2 |
无机蒙脱土-6% | 83.7 | 40.0 | 49.1 | 41.6 |
无机蒙脱土-8% | 82.2 | 42.1 | 47.7 | 57.3 |
无机蒙脱土-10% | 79.8 | 37.9 | 48.2 | 85.6 |
无机蒙脱土-12% | 78.9 | 35.4 | 48.7 | 58.2 |
聚丙烯-1% | 53.9 | 27.1 | 48.8 | 48.6 |
聚丙烯-2% | 58.2 | 27.9 | 48.1 | 31.8 |
聚丙烯-3% | 61.0 | 31.2 | 48.1 | 24.9 |
聚丙烯-4% | 59.3 | 31.6 | 48.8 | 35.7 |
聚苯乙烯-1% | 80.7 | 76.0 | 46.2 | 70.4 |
聚苯乙烯-2% | 73.9 | 27.7 | 47.1 | 40.5 |
聚苯乙烯-3% | 69.2 | 17.5 | 47.6 | 43.1 |
聚苯乙烯-4% | 47.7 | 9.9 | 50.4 | 79.4 |
Mg(OH)2-6% | 70.5 | 32.8 | 49.2 | 53.1 |
Mg(OH)2-8% | 73.7 | 27.9 | 51.1 | 66.2 |
Mg(OH)2-10% | 68.3 | 24.6 | 52.8 | 88.7 |
Mg(OH)2-12% | 66.3 | 24.0 | 54.1 | 47.8 |
Al(OH)3-6% | 76.8 | 35.0 | 46.2 | 33.8 |
Al(OH)3-8% | 75.2 | 25.7 | 47.1 | 38.0 |
Al(OH)3-10% | 73.1 | 23.5 | 47.6 | 75.7 |
Al(OH)3-12% | 72.7 | 20.8 | 50.4 | 71.9 |
C-1% | 68.1 | 36.0 | 45.6 | 83.4 |
C-2% | 58.6 | 27.7 | 47.1 | 29.4 |
C-3% | 61.2 | 17.5 | 47.6 | 83.0 |
C-4% | 56.8 | 9.9 | 50.4 | 72.6 |
三聚氰胺-1% | 80.9 | 26.0 | 46.2 | 53.6 |
三聚氰胺-2% | 79.9 | 17.7 | 48.9 | 45.3 |
三聚氰胺-3% | 81.8 | 15.5 | 49.7 | 15.7 |
三聚氰胺-4% | 83.6 | 11.9 | 50.4 | 87.8 |
沥青种类 | 参数 | 指标 | |||
---|---|---|---|---|---|
针入度 | 延度 | 软化点 | 抑烟率 | ||
SK | 信息熵 | 0.95 | 0.94 | 0.89 | 0.92 |
权重 | 0.16 | 0.20 | 0.37 | 0.26 | |
ZH | 信息熵 | 0.90 | 0.94 | 0.86 | 0.90 |
权重 | 0.25 | 0.15 | 0.35 | 0.25 |
沥青种类 | 参数 | 指标 | |||
---|---|---|---|---|---|
针入度 | 延度 | 软化点 | 抑烟率 | ||
SK | 信息熵 | 0.95 | 0.94 | 0.89 | 0.92 |
权重 | 0.16 | 0.20 | 0.37 | 0.26 | |
ZH | 信息熵 | 0.90 | 0.94 | 0.86 | 0.90 |
权重 | 0.25 | 0.15 | 0.35 | 0.25 |
沥青种类 | 目标函数值 | 优化复掺配比组合 | 针入度/0.1mm | 简称 | 延度(10℃)/cm | 软化点/℃ | 抑烟率/% |
---|---|---|---|---|---|---|---|
SK | 42.83 | 有机蒙脱土∶电气石(2000目)=9.5∶16.3 | 93.68 | SK-1 | 51.59 | 46.66 | 99.54 |
有机蒙脱土∶电气石(5000目)=12.2∶15.8 | 91.82 | SK-2 | 51.78 | 47.35 | 98.55 | ||
ZH | 53.04 | 有机蒙脱土∶电气石(2000目)=12.4∶16.6 | 95.26 | ZH-1 | 50.08 | 61.35 | 99.86 |
无机蒙脱土∶电气石(2000目)=10.8∶16.0 | 96.72 | ZH-2 | 48.80 | 59.06 | 100.00 |
沥青种类 | 目标函数值 | 优化复掺配比组合 | 针入度/0.1mm | 简称 | 延度(10℃)/cm | 软化点/℃ | 抑烟率/% |
---|---|---|---|---|---|---|---|
SK | 42.83 | 有机蒙脱土∶电气石(2000目)=9.5∶16.3 | 93.68 | SK-1 | 51.59 | 46.66 | 99.54 |
有机蒙脱土∶电气石(5000目)=12.2∶15.8 | 91.82 | SK-2 | 51.78 | 47.35 | 98.55 | ||
ZH | 53.04 | 有机蒙脱土∶电气石(2000目)=12.4∶16.6 | 95.26 | ZH-1 | 50.08 | 61.35 | 99.86 |
无机蒙脱土∶电气石(2000目)=10.8∶16.0 | 96.72 | ZH-2 | 48.80 | 59.06 | 100.00 |
沥青种类 | 上部/℃ | 下部/℃ | 软化点差/℃ |
---|---|---|---|
SK-1 | 47.1 | 46.4 | 0.7 |
SK-2 | 47.9 | 46.6 | 1.3 |
ZH-1 | 47.3 | 46.4 | 0.9 |
ZH-2 | 48.2 | 45.9 | 2.3 |
沥青种类 | 上部/℃ | 下部/℃ | 软化点差/℃ |
---|---|---|---|
SK-1 | 47.1 | 46.4 | 0.7 |
SK-2 | 47.9 | 46.6 | 1.3 |
ZH-1 | 47.3 | 46.4 | 0.9 |
ZH-2 | 48.2 | 45.9 | 2.3 |
沥青种类 | 针入度/0.1mm | 10℃延度/cm | 软化点/℃ |
---|---|---|---|
SK-1 | 85.3 | 48.8 | 46.7 |
SK-2 | 84.9 | 47.2 | 44.3 |
ZH-1 | 86.9 | 43.4 | 47.8 |
ZH-2 | 84.1 | 45.6 | 47.9 |
沥青种类 | 针入度/0.1mm | 10℃延度/cm | 软化点/℃ |
---|---|---|---|
SK-1 | 85.3 | 48.8 | 46.7 |
SK-2 | 84.9 | 47.2 | 44.3 |
ZH-1 | 86.9 | 43.4 | 47.8 |
ZH-2 | 84.1 | 45.6 | 47.9 |
沥青种类 | 相对误差/% | |||
---|---|---|---|---|
针入度 | 延度(10℃) | 软化点 | 抑烟率 | |
SK-1 | 8.9 | 5.4 | 0.1 | 1.9 |
SK-2 | 7.5 | 8.8 | 3.3 | -0.1 |
ZH-1 | 8.8 | 13.3 | 20.0 | 0.2 |
ZH-2 | 13.0 | 6.6 | 16.7 | 0.4 |
平均相对误差/% | 9.6 | 8.5 | 10.0 | 0.6 |
沥青种类 | 相对误差/% | |||
---|---|---|---|---|
针入度 | 延度(10℃) | 软化点 | 抑烟率 | |
SK-1 | 8.9 | 5.4 | 0.1 | 1.9 |
SK-2 | 7.5 | 8.8 | 3.3 | -0.1 |
ZH-1 | 8.8 | 13.3 | 20.0 | 0.2 |
ZH-2 | 13.0 | 6.6 | 16.7 | 0.4 |
平均相对误差/% | 9.6 | 8.5 | 10.0 | 0.6 |
1 | 《中国公路学报》编辑部. 中国路面工程学术研究综述·2020[J]. 中国公路学报, 2020, 33(10): 1-66. |
Editorial Department of China Journal of Highway and Transport. Review on China’s pavement engineering Research·2020[J]. China Journal of Highway and Transport, 2020, 33(10): 1-66. | |
2 | LIANG Yafeng, TANG Xuejiao, ZHU Qing, et al. A review: Application of tourmaline in environmental fields[J]. Chemosphere, 2021, 281: 130780. |
3 | YANG Jun, LI Zuyuan, XU Xinquan. Preparation and evaluation of cooling asphalt concrete modified with SBS and tourmaline anion powder[J]. Journal of Cleaner Production, 2021, 289: 125135. |
4 | THIVES Liseane Padilha, GHISI Enedir. Asphalt mixtures emission and energy consumption: A review[J]. Renewable and Sustainable Energy Reviews, 2017, 72: 473-484. |
5 | 杨小龙, 申爱琴, 蒋宜馨, 等. 基于阻燃抑烟的纳米黏土改性沥青综述[J]. 交通运输工程学报, 2021, 21(5): 42-61. |
YANG Xiaolong, SHEN Aiqin, JIANG Yixin, et al. Review on nano clay modified asphalt based on flame retardant and smoke suppression[J]. Journal of Traffic and Transportation Engineering, 2021, 21(5): 42-61. | |
6 | 王朝辉, 李彦伟, 葛娟, 等. Tourmaline改性沥青及其混合料热拌减排性能[J]. 中国公路学报, 2014, 27(11): 17-24. |
WANG Chaohui, LI Yanwei, GE Juan, et al. Emission reduction effect of tourmaline modified asphalt and its mixtures under condition of hot-mix[J]. China Journal of Highway and Transport, 2014, 27(11): 17-24. | |
7 | YANG Xiaolong, SHEN A, JIANG Yixin, et al. Properties and mechanism of flame retardance and smoke suppression in asphalt binder containing organic montmorillonite[J]. Construction and Building Materials, 2021, 302: 124148. |
8 | ABDULLAH Mohd Ezree, HAININ Mohd Rosli, YUSOFF Nur Izzi MD, et al. Laboratory evaluation on the characteristics and pollutant emissions of nanoclay and chemical warm mix asphalt modified binders[J]. Construction and Building Materials, 2016, 113: 488-497. |
9 | XU Tao, WANG Yang, XIA Wenjing, et al. Effects of flame retardants on thermal decomposition of SARA fractions separated from asphalt binder[J]. Construction and Building Materials, 2018, 173: 209-219. |
10 | PEI Jianzhong, WEN Yong, LI Yanwei, et al. Flame-retarding effects and combustion properties of asphalt binder blended with organo montmorillonite and alumina trihydrate[J]. Construction and Building Materials, 2014, 72: 41-47. |
11 | 郭寅川, 王涵, 申爱琴, 等. ATH/OMMT复合改性沥青阻燃抑烟性能与机理分析[J]. 硅酸盐通报, 2020, 39(6): 1989-1997. |
GUO Yinchuan, WANG Han, SHEN Aiqin, et al. Analysis of flame-retarding and smoke suppressing performance and mechanism of ATH/OMMT modified asphalt[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(6): 1989-1997. | |
12 | ZHAO H, LI H P, LIAO K J. Study on properties of flame retardant asphalt for tunnel[J]. Petroleum Science and Technology, 2010, 28(11): 1096-1107. |
13 | 金雷, 魏建国, 付其林, 等. DBDPE复合阻燃剂对SBS沥青性能的影响[J]. 长安大学学报(自然科学版), 2020, 40(2): 47-55, 65. |
JIN Lei, WEI Jianguo, FU Qilin, et al. Effect of DBDPE composite flame retardant on the performance of SBS asphalt[J]. Journal of Chang’an University (Natural Science Edition), 2020, 40(2): 47-55, 65. | |
14 | 颜可珍, 刘沛, 王晓亮. 基于GEP算法的沥青混合料动模量预测[J]. 建筑材料学报, 2015, 18(6): 1106-1110. |
YAN Kezhen, LIU Pei, WANG Xiaoliang. Prediction of dynamic modulus of asphalt mixture based on gene expression programming algorithm[J]. Journal of Building Materials, 2015, 18(6): 1106-1110. | |
15 | 童申家, 谢祥兵, 赵大勇, 等. 紫外光老化后沥青混合料路用性能非线性预测[J]. 建筑材料学报, 2016, 19(1): 105-110. |
TONG Shenjia, XIE Xiangbing, ZHAO Dayong, et al. Nonlinear prediction of road performance of asphalt mixture after ultraviolet aging[J]. Journal of Building Materials, 2016, 19(1): 105-110. | |
16 | 赵永祯, 李梦, 王选仓, 等. 基于聚类分析改性沥青混合料性能分级研究[J]. 建筑材料学报, 2014, 17(3): 437-445. |
ZHAO Yongzhen, LI Meng, WANG Xuancang, et al. Research on performance classification of modified asphalt mixture based on clustering algorithm[J]. Journal of Building Materials, 2014, 17(3): 437-445. | |
17 | NIAN Tengfei, LI Jinggao, LI Ping, et al. Method to predict the interlayer shear strength of asphalt pavement based on improved back propagation neural network[J]. Construction and Building Materials, 2022, 351: 128969. |
18 | OMAR Hend ALI, YUSOFF Nur Izzi Md, CEYLAN Halil, et al. Determining the water damage resistance of nano-clay modified bitumens using the indirect tensile strength and surface free energy methods[J]. Construction and Building Materials, 2018, 167: 391-402. |
19 | YANG Xiaolong, SHEN Aiqin, SU Yuxuan, et al. Effects of alumina trihydrate (ATH) and organic montmorillonite (OMMT) on asphalt fume emission and flame retardancy properties of SBS-modified asphalt[J]. Construction and Building Materials, 2020, 236(6): 117576. |
20 | YE Qunshan, DONG Wenzhuo, WANG Shipei, et al. Research on the rheological characteristics and aging resistance of asphalt modified with tourmaline[J]. Materials, 2019, 13(1): 69. |
21 | CHEN Qian, WANG Chaohui, QIAO Zhi, et al. Graphene/tourmaline composites as a filler of hot mix asphalt mixture: Preparation and properties[J]. Construction and Building Materials, 2020, 239: 117859. |
22 | ZHANG Xiaorui, ZHOU Xinxing, XU Xinquan, et al. Enhancing the functional and environmental properties of asphalt binders and asphalt mixtures using tourmaline anion powder modification[J]. Coatings, 2021, 11(5): 550. |
23 | LI Ping, WANG Meng, NIAN Tengfei, et al. Asphalt fume generation-enrichment device development and fume production estimation model[J]. Advances in Civil Engineering Materials, 2021, 10(1): 453-467. |
24 | 张喜军, 仝配配, 蔺习雄, 等. 基于线性振幅扫描试验评价硬质沥青的疲劳性能[J]. 材料导报, 2021, 35(18): 18083-18089. |
ZHANG Xijun, TONG Peipei, LIN Xixiong, et al. Fatigue characterization of hard petroleum asphalt based on the linear amplitude sweep test[J]. Materials Reports, 2021, 35(18): 18083-18089. |
[1] | ZHANG Shuming, LIU Huazhang. Optimization of Fe1-x O ammonia synthesis catalyst by BP neural network model [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1302-1308. |
[2] | WANG Junjie, PAN Yanqiu, NIU Yabin, YU Lu. Molecular level catalytic reforming model construction and application [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3404-3412. |
[3] | LIN Hai, WANG Yufei. Distributed wind farm layout optimization considering noise constraint [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3394-3403. |
[4] | LING Shan, LIU Juming, ZHANG Qiancheng, LI Yan. Research progress on simulated moving bed separation process and its optimization methods [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2233-2244. |
[5] | DAI Min, YANG Fusheng, ZHANG Zaoxiao, LIU Guilian, FENG Xiao. 3E Multi-objective optimization of hexane oil distillation process based on multi-strategy ensemble optimization algorithm [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 2852-2863. |
[6] | LI Dan, YANG Siyu, QIAN Yu. Syngas cryogenic separation process combined with lithium bromide absorption refrigeration and organic Rankine cycle [J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5236-5246. |
[7] | Ning JIANG, Shichao ZHAO, Xiaodong XIE, Wei FAN, Xinjie XU, Yingjie XU. Retrofit of heat integrated system of crude oil distillation system with multi-energy complementation by waste heat recovery [J]. Chemical Industry and Engineering Progress, 2021, 40(2): 652-663. |
[8] | TIAN Chang, SU Mingxu, JIANG Yu, XIA Duobing. Method and device for on-line measurement of particle size distribution and density of desulfurization slurry by ultrasonic [J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6516-6522. |
[9] | Jingkang ZHANG, Haiqing WANG, Weiwei JIANG, Xinge QI. Optimal placement of gas detector based on unavailability and voting logic [J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2503-2509. |
[10] | Junjie LI,Wanjing CHENG,Mei LIANG,Xiaohui YAN,Jingdong YANG,Yueling ZHANG,Lianyong FENG,Yajun TIAN,Kechang XIE. Comprehensive evaluation on sustainable development of China’s advanced coal to chemicals industry based on EWM-AHP [J]. Chemical Industry and Engineering Progress, 2020, 39(4): 1329-1338. |
[11] | ZHANG Shen, GAO Wei, QI Ming, YU Wenhao, WANG Honghai. A review of optimization rectification systems based on multi-objective [J]. Chemical Industry and Engineering Progress, 2019, 38(s1): 1-9. |
[12] | Hongshan BAI,Dongya ZHAO,Qunhong TIAN,Qi WANG,Shijian LU,Zhongde YANG,Jianping YANG. Stochastic optimization of the whole process of CO2 capture, transportation, utilization and sequestration [J]. Chemical Industry and Engineering Progress, 2019, 38(11): 4911-4920. |
[13] | Ning JIANG,Xiaodong XIE,Wei FAN,Yingjie XU. Data-driven optimization retrofit method with fixed topology structure for heat exchanger network [J]. Chemical Industry and Engineering Progress, 2019, 38(10): 4452-4460. |
[14] | Ning JIANG, Fengyuan GUO, Wenqiao HAN, Huajing LIU, Lu LIN. 3E Optimization of heat exchanger network system based on non-counterflow heat transfer [J]. Chemical Industry and Engineering Progress, 2019, 38(02): 761-771. |
[15] | JIANG Ning, HAN Wenqiao, GUO Fengyuan, XU Yingjie. Optimization of heat exchanger network retrofit based on actual heat load distribution [J]. Chemical Industry and Engineering Progress, 2018, 37(08): 2935-2941. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |