Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (3): 1109-1117.DOI: 10.16085/j.issn.1000-6613.2023-0469
• Chemical processes and equipment • Previous Articles
YANG Chenyang1(), ZHU Huaigong2, CAI Wangfeng1, ZHANG Minqing1, WANG Yan1(), ZHANG Ying3, CHEN Jianbing3
Received:
2023-03-27
Revised:
2023-05-05
Online:
2024-04-11
Published:
2024-03-10
Contact:
WANG Yan
杨晨阳1(), 朱怀工2, 蔡旺锋1, 张敏卿1, 王燕1(), 张英3, 陈建兵3
通讯作者:
王燕
作者简介:
杨晨阳(1999—),男,硕士研究生,研究方向为计算流体力学。E-mail:2021207495@tju.edu.cn。
CLC Number:
YANG Chenyang, ZHU Huaigong, CAI Wangfeng, ZHANG Minqing, WANG Yan, ZHANG Ying, CHEN Jianbing. Research progress of cyclic distillation technology[J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1109-1117.
杨晨阳, 朱怀工, 蔡旺锋, 张敏卿, 王燕, 张英, 陈建兵. 循环精馏技术研究进展[J]. 化工进展, 2024, 43(3): 1109-1117.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0469
1 | PETLYUK F B. Distillation theory and its application to optimal design of separation units[M]. Cambridge, UK: Cambridge University Press, 2004. |
2 | 王素贤, 何银凤, 高亚丽, 等. 四组分隔板塔用于三氯氢硅分离的模拟研究[J]. 化学工业与工程, 2018, 35(5): 72-79. |
WANG Suxian, HE Yinfeng, GAO Yali, et al. Simulation of four-product dividing wall columns for the separation of trichlorosilane[J]. Chemical Industry and Engineering, 2018, 35(5): 72-79. | |
3 | 付强, 王建刚, 张吉波. 特殊精馏的应用及进展[J]. 山东化工, 2017, 46(24): 67-68. |
FU Qiang, WANG Jiangang, ZHANG Jibo. The application and development of special distillation[J]. Shandong Chemical Industry, 2017, 46(24): 67-68. | |
4 | 江润玲, 邵明水, 王乾. 超重力精馏分离技术研究进展[J]. 山东化工, 2022, 51(21): 122-123. |
JIANG Runling, SHAO Mingshui, WANG Qian. Research progress of high gravity distillation separation technology[J]. Shandong Chemical Industry, 2022, 51(21): 122-123. | |
5 | KISS A A. Distillation technology—Still young and full of breakthrough opportunities[J]. Journal of Chemical Technology & Biotechnology, 2014, 89(4): 479-498. |
6 | Hyuk Soo SON, SHAHZAD M W, GHAFFOUR N, et al. Pilot studies on synergetic impacts of energy utilization in hybrid desalination system: Multi-effect distillation and adsorption cycle (MED-AD)[J]. Desalination, 2020, 477: 114266. |
7 | LU Kangjia, CHEN Yuanmiaoliang, CHUNG Tai-Shung. Design of omniphobic interfaces for membrane distillation—A review[J]. Water Research, 2019, 162: 64-77. |
8 | REAY D A, RAMSHAW C, HARVEY A. Process intensification: Engineering for efficiency, sustainability and flexibility[M]. 2nd ed. Oxford: Butterworth-Heinemann, 2013. |
9 | VAN GERVEN T, STANKIEWICZ A. Structure, energy, synergy, time—The fundamentals of process intensification[J]. Industrial & Engineering Chemistry Research, 2009, 48(5): 2465-2474. |
10 | JIANG Zheyu, AGRAWAL R. Process intensification in multicomponent distillation: A review of recent advancements[J]. Chemical Engineering Research and Design, 2019, 147: 122-145. |
11 | LI Chunli, DUAN Cong, FANG Jing, et al. Process intensification and energy saving of reactive distillation for production of ester compounds[J]. Chinese Journal of Chemical Engineering, 2019, 27(6): 1307-1323. |
12 | HAN Wentao, HAN Zhenwei, GAO Xuechao, et al. Inter-integration reactive distillation with vapor permeation for ethyl levulinate production: Equipment development and experimental validating[J]. AIChE Journal, 2022, 68(2): e17441. |
13 | ZHU Jiaxing, HAO Lin, WEI Hongyuan. Sustainable concept design including economic, environment and inherent safety criteria: Process intensification-reactive pressure swing distillation[J]. Journal of Cleaner Production, 2021, 314: 127852. |
14 | CONTRERAS-ZARAZÚA G, JASSO-VILLEGAS M E, RAMÍREZ-MÁRQUEZ C, et al. Design and intensification of distillation processes for furfural and co-products purification considering economic, environmental, safety and control issues[J]. Chemical Engineering and Processing-Process Intensification, 2021, 159: 108218. |
15 | WANG Yubin, LIU Xiao, GE Jing, et al. Distillation performance in a novel minichannel membrane distillation device[J]. Chemical Engineering Journal, 2023, 462: 142335. |
16 | 林子昕, 田伟, 安维中. 热泵辅助变压精馏分离碳酸二甲酯/甲醇工艺及系统模拟优化[J]. 化工进展, 2022, 41(11): 5722-5730. |
LIN Zixin, TIAN Wei, AN Weizhong. Separation of dimethyl carbonate/methanol via heat pump assisted pressure swing distillation process and system simulation optimization[J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5722-5730. | |
17 | 王晓达, 陈宇, 王清莲, 等. 醚化反应精馏研究进展[J]. 化工进展, 2021, 40(4): 1797-1811. |
WANG Xiaoda, CHEN Yu, WANG Qinglian, et al. Review on etherification by reactive distillation[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1797-1811. | |
18 | MALETA V N, KISS A A, TARAN V M, et al. Understanding process intensification in cyclic distillation systems[J]. Chemical Engineering and Processing: Process Intensification, 2011, 50(7): 655-664. |
19 | BÎLDEA C S, PĂTRUŢ C, JØRGENSEN S B, et al. Cyclic distillation technology—A mini-review[J]. Journal of Chemical Technology & Biotechnology, 2016, 91(5): 1215-1223. |
20 | ZHAO Hongkang, LI Qunsheng, YU Gangqiang, et al. Performance analysis and quantitative design of a flow-guiding sieve tray by computational fluid dynamics[J]. AIChE Journal, 2019, 65(5): e16563. |
21 | SHENASTAGHI F K, ROSHDI S, KASIRI N, et al. CFD simulation and experimental validation of bubble cap tray hydrodynamics[J]. Separation and Purification Technology, 2018, 192: 110-122. |
22 | ABBASNIA S, NASRI Z, SHAFIEYOUN V, et al. Nye tray vs sieve tray: A comparison based on computational fluid dynamics and tray efficiency[J]. The Canadian Journal of Chemical Engineering, 2021, 99(S1): S681-S692. |
23 | LEE Heecheon, SEO Chaeyeong, LEE Minyong, et al. CFD-aided design of internally heat-integrated pressure-swing distillation for ternary azeotropic separation constrained by pinch pressure[J]. Applied Thermal Engineering, 2021, 195: 117198. |
24 | 胡雨奇, 李晓冉, 李春利. 隔壁塔中新型气相分配器的多相流模拟及控制机制[J]. 中国炼油与石油化工, 2020, 22(3): 109. |
HU Yuqi, LI Xiaoran, LI Chunli. Multiphase flow simulation of new vapor distributor in dividing wall column and control mechanism[J]. China Petroleum Processing & Petrochemical Technology, 2020, 22(3): 109. | |
25 | OLUJIĆ Ž, JÖDECKE M, SHILKIN A, et al. Equipment improvement trends in distillation[J]. Chemical Engineering and Processing: Process Intensification, 2009, 48(6): 1089-1104. |
26 | STICHLMAIR J, KLEIN H, REHFELDT S. Distillation: Principles and practice[M]. New York: John Wiley & Sons, 2021. |
27 | KISS A, A, BÎLDEA C S. Revive your columns with cyclic distillation[J]. Chemical Engineering Progress, 2015, 111(12): 21-27. |
28 | PĂTRUŢ C, BÎLDEA C S, LIŢĂ I, et al. Cyclic distillation—Design, control and applications[J]. Separation and Purification Technology, 2014, 125: 326-336. |
29 | KISS A A, FLORES LANDAETA S J, ZONDERVAN E. Cyclic distillation—Towards energy efficient binary distillation[M]//Computer Aided Chemical Engineering. Amsterdam: Elsevier, 2012: 697-701. |
30 | KISS A A, MALETA V. Cyclic distillation technology—A new challenger in fluid separations[J]. Chemical Engineering Transactions, 2018, 69: 823-828. |
31 | KISS A A, MALETA V N, SHEVCHENKO A, et al. Cyclic distillation—A novel enhanced technology for processing hydrocarbons and their derivatives[J]. Hydrocarbon Processing, 2021, 1: 33-38. |
32 | 赵培, 张艳梅, 熊丹柳, 等. 浅述流体力学因素对精馏塔塔板效率的影响[J]. 化肥设计, 2010, 48(1): 10-12. |
ZHAO Pei, ZHANG Yanmei, XIONG Danliu, et al. Briefly describing influence of hydrodynamic factor on efficiency of fractionating tower tray[J]. Chemical Fertilizer Design, 2010, 48(1): 10-12. | |
33 | GASKA R A, CANNON M R. Controlled cycling distillation in sieve and screen plate towers[J]. Industrial & Engineering Chemistry, 1961, 53(8): 630-631. |
34 | MCWHIRTER J R, CANNON M R. Controlled cycling distillation in a packed-plate column[J]. Industrial & Engineering Chemistry, 1961, 53(8): 632-634. |
35 | SCHRODT V N, SOMMERFELD J T, MARTIN O R, et al. Plant-scale study of controlled cyclic distillation[J]. Chemical Engineering Science, 1967, 22(5): 759-767. |
36 | FURZER I A. Steady state flow distributions in a plate column fitted with a manifold[J]. Chemical Engineering Science, 1980, 35(6): 1291-1298. |
37 | SZONYI L, FURZER I A. Periodic cycling of distillation columns using a new tray design[J]. AIChE Journal, 1985, 31(10): 1707-1713. |
38 | FURZER I A. Mass transfer in a periodically cycled plate column fitted with a manifold[J]. Chemical Engineering Science, 1980, 35(6): 1299-1305. |
39 | DUFFY G J, FURZER I A. Periodic cycling of plate columns: Analytical solution [J]. Chemical Engineering Science, 1978, 33(7): 897-904. |
40 | GEL’PERIN N I, POLOTSKII L M, POTAPOV T G. Opfration of a bubble-cap fractionating column in a cyclic regime[J]. Chemical and Petroleum Engineering, 1975, 11(8): 707-709. |
41 | PĂTRUŢ C, BÎLDEA C S, KISS A A. Catalytic cyclic distillation—A novel process intensification approach in reactive separations[J]. Chemical Engineering and Processing: Process Intensification, 2014, 81: 1-12. |
42 | MALETA B, MALETA O. Mass-exchange contact device: US8158073[P]. 2012-04-17. |
43 | MALETA B, MALETA O. Mass-exchange contact device: US12/225575[P]. 2009-06-11. |
44 | TOFTEGÅRD B, CLAUSEN C H, JØRGENSEN S B, et al. New realization of periodic cycled separation[J]. Industrial & Engineering Chemistry Research, 2016, 55(6): 1720-1730. |
45 | NIELSEN A A R, ÁLVAREZ E C, CARLSEN N, et al. Analysis and evaluation of periodic separations using cops trays[J]. Chemical Engineering Transactions (CET Journal), 2018, 69: 733-738. |
46 | MALETA B V, SHEVCHENKO A, BEDRYK O, et al. Pilot-scale studies of process intensification by cyclic distillation[J]. AIChE Journal, 2015, 61(8): 2581-2591. |
47 | MALETA V N, BEDRYK O, SHEVCHENKO A, et al. Pilot-scale experimental studies on ethanol purification by cyclic stripping[J]. AIChE Journal, 2019, 65(9): e16673. |
48 | BULII Y, KUTS A, YURYK I, et al. Improving the efficiency of mass-exchange between liquid and steam in rectification columns of cyclic action[J]. Ukrainian Food Journal, 2021, 10(2): 346-360. |
49 | BEDRYK O, SHEVCHENKO A, MISHCHENKO O S, et al. Industrial experience in using cyclic distillation columns for food grade alcohol purification[J]. Chemical Engineering Research and Design, 2023, 192: 102-109. |
50 | KISS A A. Novel catalytic reactive distillation processes for a sustainable chemical industry[J]. Topics in Catalysis, 2019, 62(17): 1132-1148. |
51 | WANKAT P C. Continuous cyclic distillation for binary solvent exchange: The batch stack[J]. Industrial & Engineering Chemistry Research, 2018, 57(47): 16077-16083. |
52 | RASMUSSEN J B, MANSOURI S S, ZHANG Xiangping, et al. Analysing separation and reaction stage performance in a reactive cyclic distillation process[J]. Chemical Engineering and Processing-Process Intensification, 2021, 167: 108515. |
53 | MATSUBARA M, WATANABE N, KURIMOTO H. Binary periodic distillation scheme with enhanced energy conservation—Ⅰ: Principle and computer simulation [J]. Chemical Engineering Science, 1985, 40(5): 715-721. |
54 | PĂTRUŢ C, UDREA E C, BILDEA C S. Application of cyclic operation to acetic/water separation[M]//Computer Aided Chemical Engineering. Amsterdam: Elsevier, 2019: 1351-1356. |
55 | PĂTRUŢ C, UDREA E C, BILDEA C S. Separation of water-acetic acid mixtures by cyclic distillation[J]. UPB Scientific Bulletin, Series B: Chemistry and Materials Science, 2018, 80(4): 49-66. |
56 | NIESBACH A, FUHRMEISTER R, KELLER T, et al. Esterification of acrylic acid and n-butanol in a pilot-scale reactive distillation column—Experimental investigation, model validation, and process analysis[J]. Industrial & Engineering Chemistry Research, 2012, 51(50): 16444-16456. |
57 | RASMUSSEN J B, STEVNSBORG M, MANSOURI S S, et al. Quantitative metrics for evaluating reactive cyclic distillation performance[J]. Chemical Engineering and Processing-Process Intensification, 2022, 174: 108843. |
[1] | SU Mengjun, LIU Jian, XIN Jing, CHEN Yufei, ZHANG Haihong, HAN Longnian, ZHU Yuanbao, LI Hongbao. Progress in the application of gas-liquid mixing intensification in fixed-bed hydrogenation [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 100-110. |
[2] | ZHAI Linxiao, CUI Yizhou, LI Chengxiang, SHI Xiaogang, GAO Jinsen, LAN Xingying. Research and application process of microbubble generator [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 111-123. |
[3] | TIAN Shihong, GUO Lei, LI Na, YUWEN Chao, XU Lei, GUO Shenghui, JU Shaohua. Scientific basis and development trend of microwave heating enhanced flash evaporation process [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 135-144. |
[4] | WANG Lihua, CAI Suhang, JIANG Wentao, LUO Qian, LUO Yong, CHEN Jianfeng. Research progress of micro and nano scale gas-liquid mass transfer to intensify catalytic hydrogenation of oil products [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 19-33. |
[5] | ZHANG Liang, MA Ji, HE Gaohong, JIANG Xiaobin, XIAO Wu. Determination and analysis of combined cooling and antisolvent crystallization metastable zone width of cefuroxime sodium with membrane regulation [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 260-268. |
[6] | LIU Feng, CHU Yang, LI Huifeng, LI Mingfeng, ZHU Mei, ZHANG Runqiang. Reaction process intensification of heavy molecular mercaptan in FCC gasoline catalytic conversion [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 279-284. |
[7] | WANG Xiong, YANG Zhenning, LI Yue, SHEN Weifeng. Optimization of methanol distillation process based on chemical mechanism and industrial digital twinning modeling [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 310-319. |
[8] | YUAN Liang, CONG Haifeng, LI Xingang. Research progress on gas-liquid flow and mass transfer characteristics in microchannels [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 34-48. |
[9] | FENG Yaoguang, CHEN Kui, ZHAO Jiawei, WANG Na, WANG Ting, HUANG Xin, ZHOU Lina, HAO Hongxun. Process intensification of solution crystallization [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 87-99. |
[10] | ZHANG Fengqi, CUI Chengdong, BAO Xuewei, ZHU Weixuan, DONG Hongguang. Design and evaluation of sweetening process with amine solution absorption and multiple desorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 518-528. |
[11] | SUN Yuyu, CAI Xinlei, TANG Jihai, HUANG Jingjing, HUANG Yiping, LIU Jie. Optimization and energy-saving of a reactive distillation process for the synthesis of methyl methacrylate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 56-63. |
[12] | LI Mengyuan, GUO Fan, LI Qunsheng. Simulation and optimization of the third and fourth distillation columns in the recovery section of polyvinyl alcohol production [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 113-123. |
[13] | ZHANG Fan, TAO Shaohui, CHEN Yushi, XIANG Shuguang. Initializing distillation column simulation based on the improved constant heat transport model [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4550-4558. |
[14] | LI Xuejia, LI Peng, LI Zhixia, JIN Dunshang, GUO Qiang, SONG Xufeng, SONG Peng, PENG Yuelian. Experimental comparation on anti-scaling and anti-wetting ability of hydrophilic and hydrophobic modified membranes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4458-4464. |
[15] | XU Jie, XIA Longbo, LUO Ping, ZOU Dong, ZHONG Zhaoxiang. Progress in preparation and application of omniphobic membranes for membrane distillation process [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3943-3955. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |