Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (2): 722-733.DOI: 10.16085/j.issn.1000-6613.2023-1368
• Column: multiphase flow test • Previous Articles Next Articles
BIAN Hanqing1(), ZHANG Xingkai1(
), LIAO Ruiquan1, WANG Dong2, LI Rui1, LUO Xiaochu1, HOU Yaodong1, BAI Xiaohong3, GAN Qingming3
Received:
2023-08-10
Revised:
2023-10-28
Online:
2024-03-07
Published:
2024-02-25
Contact:
ZHANG Xingkai
边汉青1(), 张兴凯1(
), 廖锐全1, 王栋2, 李锐1, 罗晓矗1, 侯耀东1, 白晓弘3, 甘庆明3
通讯作者:
张兴凯
作者简介:
边汉青(1999—),男,硕士研究生,研究方向为石油工程多相流流量测量。E-mail:1271752268@qq.com。
基金资助:
CLC Number:
BIAN Hanqing, ZHANG Xingkai, LIAO Ruiquan, WANG Dong, LI Rui, LUO Xiaochu, HOU Yaodong, BAI Xiaohong, GAN Qingming. Double-parameter measurement method of wet gas in phase-isolation state[J]. Chemical Industry and Engineering Progress, 2024, 43(2): 722-733.
边汉青, 张兴凯, 廖锐全, 王栋, 李锐, 罗晓矗, 侯耀东, 白晓弘, 甘庆明. 管内相分隔状态下湿气两相流双参数测量方法[J]. 化工进展, 2024, 43(2): 722-733.
模型 | R2 |
---|---|
修正前虚高模型 | 0.937 |
修正前液气质量比模型 | 0.918 |
新虚高模型 | 0.962 |
新液气质量比模型 | 0.946 |
模型 | R2 |
---|---|
修正前虚高模型 | 0.937 |
修正前液气质量比模型 | 0.918 |
新虚高模型 | 0.962 |
新液气质量比模型 | 0.946 |
压力/MPa | 含水率/% | 气流量/m3·h-1 | 液流量/m3·h-1 |
---|---|---|---|
1 | 0 | 600~1500 | 0 |
1 | 2.5 | 600~1500 | 1.65~4.12 |
1 | 5 | 600~1500 | 3.28~8.24 |
3 | 0 | 600~1500 | 0 |
3 | 2.5 | 600~1500 | 0.55~1.38 |
3 | 5 | 600~1500 | 1.10~2.74 |
5 | 0 | 600~1500 | 0 |
5 | 2.5 | 600~1500 | 0.34~0.84 |
5 | 5 | 600~1500 | 0.67~1.69 |
压力/MPa | 含水率/% | 气流量/m3·h-1 | 液流量/m3·h-1 |
---|---|---|---|
1 | 0 | 600~1500 | 0 |
1 | 2.5 | 600~1500 | 1.65~4.12 |
1 | 5 | 600~1500 | 3.28~8.24 |
3 | 0 | 600~1500 | 0 |
3 | 2.5 | 600~1500 | 0.55~1.38 |
3 | 5 | 600~1500 | 1.10~2.74 |
5 | 0 | 600~1500 | 0 |
5 | 2.5 | 600~1500 | 0.34~0.84 |
5 | 5 | 600~1500 | 0.67~1.69 |
计量阀开度/% | 气相平均误差/% |
---|---|
20.6 | -4.23 |
26 | -1.81 |
30.3 | 0.85 |
42 | 2.32 |
51 | 2.23 |
15.6 | -2.38 |
计量阀开度/% | 气相平均误差/% |
---|---|
20.6 | -4.23 |
26 | -1.81 |
30.3 | 0.85 |
42 | 2.32 |
51 | 2.23 |
15.6 | -2.38 |
井口压力/MPa | 气相平均误差/% | 液相平均误差/% |
---|---|---|
1 | -0.55 | -1.18 |
3 | 2.15 | -2.26 |
5 | 1.51 | -4.56 |
井口压力/MPa | 气相平均误差/% | 液相平均误差/% |
---|---|---|
1 | -0.55 | -1.18 |
3 | 2.15 | -2.26 |
5 | 1.51 | -4.56 |
1 | 侯正猛, 罗佳顺, 曹成, 等. 中国碳中和目标下的天然气产业发展与贡献[J]. 工程科学与技术, 2023, 55(1): 243-252. |
HOU Zhengmeng, LUO Jiashun, CAO Cheng, et al. Development and contribution of natural gas industry under the goal of carbon neutrality in China[J]. Advanced Engineering Sciences, 2023, 55(1): 243-252. | |
2 | 何东博, 贾成业, 位云生, 等. 世界天然气产业形势与发展趋势[J]. 天然气工业, 2022, 42(11): 1-12. |
HE Dongbo, JIA Chengye, WEI Yunsheng, et al. Current situation and development trend of world natural gas industry[J]. Natural Gas Industry, 2022, 42(11): 1-12. | |
3 | 徐英, 张强, 于磊, 等. 凝析天然气两相流不分离测量技术[J]. 天然气工业, 2011, 31(4): 103-108, 133. |
XU Ying, ZHANG Qiang, YU Lei, et al. Non-separation two-phase flow measurement of natural gas condensate[J]. Natural Gas Industry, 2011, 31(4): 103-108, 133. | |
4 | API. State of the art multiphase flow metering[M]. 1st ed. Washington D C: API Publishing Services, 2004. |
5 | 中华人民共和国国家质量监督检验检疫总局. 用安装在圆形截面管道中的差压装置测量湿气气体流量: [S]. 北京: 中国标准出版社, 2018. |
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Measurement of wet gas flow with differential pressure device installed in circular section pipeline [S]. Beijing: Standards Press of China, 2018. | |
6 | LIN Z H. Two-phase flow measurements with sharp-edged orifices[J]. International Journal of Multiphase Flow, 1982, 8(6): 683-693. |
7 | MURDOCK J W. Two-phase flow measurement with orifices[J]. Journal of Basic Engineering, 1962, 84(4): 419-432. |
8 | DE LEEUW H. Wet gas flow measurement by means of a Venturi meter and a tracer technique[J]. North Sea Flow Measurement Workshop, Peebles, Scotland, 1994. |
9 | STEVEN R N. Wet gas metering with a horizontally mounted Venturi meter[J]. Flow Measurement and Instrumentation, 2002, 12(5/6): 361-372. |
10 | Technical Committee ISO/TC 30. Measurement of wet gas flow by means of pressure differential devices inserted in circular cross-section conduits[R]. Geneva: ISO, 2012. |
11 | HE Denghui, BAI Bofeng. Numerical investigation of wet gas flow in Venturi meter[J]. Flow Measurement and Instrumentation, 2012, 28: 1-6. |
12 | ZHENG Weibiao, LIANG Ruomiao, ZHANG Xingkai, et al. Wet gas measurements of long-throat Venturi Tube based on forced annular flow[J]. Flow Measurement and Instrumentation, 2021, 81: 102037. |
13 | WANG Shuai, WANG Dong, YANG Yang, et al. Phase-isolation of upward oil-water flow using centrifugal method[J]. Flow Measurement and Instrumentation, 2015, 46: 33-43. |
14 | 刘明. 管内相分隔状态下电磁流量计测量气液两相流的方法[J]. 石油与天然气化工, 2020, 49(6): 95-100. |
LIU Ming. Gas-liquid two-phase flow measurement by electromagnetic flowmeter under phase-isolation state[J]. Chemical Engineering of Oil & Gas, 2020, 49(6): 95-100. | |
15 | 王帅, 王栋, 董宝光, 等. 基于管内相分隔的径向压差在多相流测量的应用[J]. 化工学报, 2018, 69(12): 5049-5055. |
WANG Shuai, WANG Dong, DONG Baoguang, et al. Radial differential pressure used in multiphase flow metering based on phase-isolation[J]. CIESC Journal, 2018, 69(12): 5049-5055. | |
16 | 杨杨, 胡海航, 哈雯, 等. 管内相分隔高含水油水两相流双参数测量方法[J]. 化工进展, 2021, 40(12): 6441-6449. |
YANG Yang, HU Haihang, Wen HA, et al. Method of high water-cut oil-water two-phase flow measurement based on phase-isolation[J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6441-6449. | |
17 | 雷玲卷, 张兴凯, 廖锐全, 等. 基于强制环状流工况的湿气测量数值模拟研究[J]. 石油机械, 2022, 50(10): 87-95. |
LEI Lingjuan, ZHANG Xingkai, LIAO Ruiquan, et al. Numerical simulation of wet gas measurement under forced annular flow conditions[J]. China Petroleum Machinery, 2022, 50(10): 87-95. | |
18 | 刘明. 管内相分隔状态下电磁流量计测量气液两相流的方法[J]. 石油与天然气化工, 2020, 49(6): 95-100. |
LIU Ming. Gas-liquid two-phase flow measurement by electromagnetic flowmeter under phase-isolation state[J]. Chemical Engineering of Oil & Gas, 2020, 49(6): 95-100. | |
19 | 王帅, 李庆芝, 陈建英, 等. 管内相分隔双压差在多相流双参数测量中的应用[J]. 化工学报, 2020, 71(12): 5515-5520. |
WANG Shuai, LI Qingzhi, CHEN Jianying, et al. Dual differential pressure used in multiphase flow double-parameter metering based on phase-isolation[J]. CIESC Journal, 2020, 71(12): 5515-5520. | |
20 | WANG Shuai, WANG Dong, ZHANG Wei, et al. Coupled model of dual differential pressure (DDP) for two-phase flow measurement based on phase-isolation method[J]. Flow Measurement and Instrumentation, 2021, 80: 102005. |
21 | WANG Shuai, WANG Dong, NIU Pengman, et al. Mass flowrate measurement using the swirl motion in circular conduits[J]. Flow Measurement and Instrumentation, 2017, 54: 177-184. |
22 | NOROOZI S, HASHEMABADI S H. CFD simulation of inlet design effect on deoiling hydrocyclone separation efficiency[J]. Chemical Engineering & Technology, 2009, 32(12): 1885-1893. |
23 | MANDHANE J M, GREGORY G A, AZIZ K. A flow pattern map for gas-liquid flow in horizontal pipes[J]. International Journal of Multiphase Flow, 1974, 1(4): 537-553. |
24 | FERROUDJI Hicham, HADJADJ Ahmed, HADDAD Ahmed, et al. Numerical study of parameters affecting pressure drop of power-law fluid in horizontal annulus for laminar and turbulent flows[J]. Journal of Petroleum Exploration and Production Technology, 2019, 9(4): 3091-3101. |
25 | FAROUK TAHROUR, ABDELMOUMENE HAKIM BENMACHICHE, MOUNIR AKSAS, et al. 3-D numerical study and comparison of eccentric and concentric annular-finned tube heat exchangers[J]. Journal of Engineering Science and Technology, 2015, 10(11): 1508-1524. |
26 | ZHENG Xuebo, HE Denghui, YU Zhigang, et al. Error analysis of gas and liquid flow rates metering method based on differential pressure in wet gas[J]. Experimental Thermal and Fluid Science, 2016, 79: 245-253. |
27 | LI Shanshan, ZHENG Xuebo, ZHAO Fan, et al. Comparison of throttle devices to measure two-phase flowrates of wet gas with extremely-low liquid loading[J]. Flow Measurement and Instrumentation, 2020, 76: 101840. |
28 | ZHANG Qiang, LIU Dingfa. Study on application of wet gas metering technology in shale gas measurement[J]. Flow Measurement and Instrumentation, 2020, 74: 101777. |
[1] | LI Jing, FANG Qing, ZHOU Wenhao, WU Guoliang, WANG Jiahui, ZHANG Hua, NI Hongwei. Effect of baffle configuration on the multiphase flow behaviors of vanadium shale leaching tank [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 619-627. |
[2] | JIAN Yu, CHEN Baoming, GONG Hanyu. Enhanced heat transfer characteristics of phase change heat storage systems based on hierarchically structured skeletons [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 649-658. |
[3] | XIE Guangshuo, ZHANG Siliang, HE Song, XIAO Juan, WANG Simin. Global sensitivity analysis for particulate fouling performance based on metamodel of optimal prognosis [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 328-337. |
[4] | FENG Debin, WANG Wen, MA Fanhua. Simulation and analysis for pipeline transportation characteristics of hydrogen-enriched compressed natural gas [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 390-399. |
[5] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[6] | SHAO Boshi, TAN Hongbo. Simulation on the enhancement of cryogenic removal of volatile organic compounds by sawtooth plate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 84-93. |
[7] | WANG Tai, SU Shuo, LI Shengrui, MA Xiaolong, LIU Chuntao. Dynamic behavior of single bubble attached to the solid wall in the AC electric field [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 133-141. |
[8] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[9] | YANG Yudi, LI Wentao, QIAN Yongkang, HUI Junhong. Analysis of influencing factors of natural gas turbulent diffusion flame length in industrial combustion chamber [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 267-275. |
[10] | ZHAO Xi, MA Haoran, LI Ping, HUANG Ailing. Simulation analysis and optimization design of mixing performance of staggered impact micromixer [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4559-4572. |
[11] | LIU Xuanlin, WANG Yikai, DAI Suzhou, YIN Yonggao. Analysis and optimization of decomposition reactor based on ammonium carbamate in heat pump [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4522-4530. |
[12] | CHEN Lin, XU Peiyuan, ZHANG Xiaohui, CHEN Jie, XU Zhenjun, CHEN Jiaxiang, MI Xiaoguang, FENG Yongchang, MEI Deqing. Investigation on the LNG mixed refrigerant flow and heat transfer characteristics in coil-wounded heat exchanger (CWHE) system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4496-4503. |
[13] | YE Zhendong, LIU Han, LYU Jing, ZHANG Yaning, LIU Hongzhi. Optimization of thermochemical energy storage reactor based on calcium and magnesium binary salt hydrates [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4307-4314. |
[14] | YU Junnan, YU Jianfeng, CHENG Yang, QI Yibo, HUA Chunjian, JIANG Yi. Performance prediction of variable-width microfluidic concentration gradient chips by deep learning [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3383-3393. |
[15] | SHAN Xueying, ZHANG Meng, ZHANG Jiafu, LI Lingyu, SONG Yan, LI Jinchun. Numerical simulation of combustion of flame retardant epoxy resin [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3413-3419. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 406
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 132
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |