Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (12): 6620-6630.DOI: 10.16085/j.issn.1000-6613.2023-0090
• Resources and environmental engineering • Previous Articles
CUI Qian1(), WANG Annan1, CHEN Zaiming2, SUN Qiaoyi1, WANG Baodeng1, WANG Yongsheng3, SUN Nannan4, HU Jian2, LI Jingfeng5, XIONG Rihua1()
Received:
2023-01-19
Revised:
2023-03-20
Online:
2024-01-08
Published:
2023-12-25
Contact:
XIONG Rihua
崔倩1(), 王岸楠1, 陈再明2, 孙峤昳1, 王保登1, 王永胜3, 孙楠楠4, 胡剑2, 李井峰5, 熊日华1()
通讯作者:
熊日华
作者简介:
崔倩(1991—),女,硕士,工程师,研究方向为CCUS、新能源。E-mail:qian.cui.c@chnenergy.com.cn。
CLC Number:
CUI Qian, WANG Annan, CHEN Zaiming, SUN Qiaoyi, WANG Baodeng, WANG Yongsheng, SUN Nannan, HU Jian, LI Jingfeng, XIONG Rihua. Preparation and performance optimization of liquefied residue-based CO2 adsorbents[J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6620-6630.
崔倩, 王岸楠, 陈再明, 孙峤昳, 王保登, 王永胜, 孙楠楠, 胡剑, 李井峰, 熊日华. 液化残渣基CO2吸附剂的制备与性能优化[J]. 化工进展, 2023, 42(12): 6620-6630.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0090
样品 | 工业分析 | 元素分析 | |||||||
---|---|---|---|---|---|---|---|---|---|
Mad | Ad | Vd | FCd | C | H | N | S | ||
CLR | 0.31 | 26.28 | 33.56 | 40.17 | 67.60 | 4.26 | 0.53 | 4.99 | |
DCLR | 0.26 | 0.35 | 51.91 | 47.75 | 91.20 | 6.41 | 1.14 | 0.21 |
样品 | 工业分析 | 元素分析 | |||||||
---|---|---|---|---|---|---|---|---|---|
Mad | Ad | Vd | FCd | C | H | N | S | ||
CLR | 0.31 | 26.28 | 33.56 | 40.17 | 67.60 | 4.26 | 0.53 | 4.99 | |
DCLR | 0.26 | 0.35 | 51.91 | 47.75 | 91.20 | 6.41 | 1.14 | 0.21 |
样品 | 成分 | ||||||||
---|---|---|---|---|---|---|---|---|---|
Fe2O3 | CaO | SO3 | SiO2 | Al2O3 | TiO2 | MgO | Na2O | 其他 | |
CLR | 53.48 | 12.39 | 12.19 | 11.79 | 5.77 | 1.16 | 1.05 | 1.02 | 1.15 |
DCLR | 45.88 | 11.92 | 22.33 | 7.13 | 4.70 | 1.08 | 1.57 | 3.99 | 1.40 |
样品 | 成分 | ||||||||
---|---|---|---|---|---|---|---|---|---|
Fe2O3 | CaO | SO3 | SiO2 | Al2O3 | TiO2 | MgO | Na2O | 其他 | |
CLR | 53.48 | 12.39 | 12.19 | 11.79 | 5.77 | 1.16 | 1.05 | 1.02 | 1.15 |
DCLR | 45.88 | 11.92 | 22.33 | 7.13 | 4.70 | 1.08 | 1.57 | 3.99 | 1.40 |
样品 | SBET/m2·g-1 | Smic /m2·g-1 | Vtol /cm3·g-1 | Vmic /cm3·g-1 | Da/nm |
---|---|---|---|---|---|
CLR-1-10C-0.5h | 1308 | 1103 | 0.61 | 0.46 | 4.73 |
CLR-1-10C-1h | 1259 | 1121 | 0.59 | 0.47 | 2.98 |
CLR-1-10C-1.5h | 1251 | 1038 | 0.57 | 0.43 | 4.65 |
CLR-1-10C-2h | 1328 | 996 | 0.78 | 0.39 | 4.84 |
样品 | SBET/m2·g-1 | Smic /m2·g-1 | Vtol /cm3·g-1 | Vmic /cm3·g-1 | Da/nm |
---|---|---|---|---|---|
CLR-1-10C-0.5h | 1308 | 1103 | 0.61 | 0.46 | 4.73 |
CLR-1-10C-1h | 1259 | 1121 | 0.59 | 0.47 | 2.98 |
CLR-1-10C-1.5h | 1251 | 1038 | 0.57 | 0.43 | 4.65 |
CLR-1-10C-2h | 1328 | 996 | 0.78 | 0.39 | 4.84 |
样品 | SBET/m2·g-1 | Smic/m2·g-1 | Vtol/cm3·g-1 | Vmic/cm3·g-1 | Da/nm |
---|---|---|---|---|---|
CLR-1-3C-1h | 1311 | 1244 | 0.60 | 0.53 | 1.83 |
CLR-1-5C-1h | 1389 | 1221 | 0.63 | 0.52 | 2.22 |
CLR-1-10C-1h | 1259 | 1121 | 0.59 | 0.47 | 2.98 |
样品 | SBET/m2·g-1 | Smic/m2·g-1 | Vtol/cm3·g-1 | Vmic/cm3·g-1 | Da/nm |
---|---|---|---|---|---|
CLR-1-3C-1h | 1311 | 1244 | 0.60 | 0.53 | 1.83 |
CLR-1-5C-1h | 1389 | 1221 | 0.63 | 0.52 | 2.22 |
CLR-1-10C-1h | 1259 | 1121 | 0.59 | 0.47 | 2.98 |
样品 | SBET/m2·g-1 | Smic/m2·g-1 | Vtol/cm3·g-1 | Vmic/cm3·g-1 | Da/nm |
---|---|---|---|---|---|
CLR-0-5C-1h | 49 | 36 | 0.03 | 0.01 | 3.98 |
CLR-0.5-5C-1h | 708 | 630 | 0.37 | 0.24 | 2.10 |
CLR-1-5C-1h | 1389 | 1221 | 0.63 | 0.52 | 2.22 |
CLR-2-5C-1h | 1528 | 1103 | 0.95 | 0.50 | 2.87 |
样品 | SBET/m2·g-1 | Smic/m2·g-1 | Vtol/cm3·g-1 | Vmic/cm3·g-1 | Da/nm |
---|---|---|---|---|---|
CLR-0-5C-1h | 49 | 36 | 0.03 | 0.01 | 3.98 |
CLR-0.5-5C-1h | 708 | 630 | 0.37 | 0.24 | 2.10 |
CLR-1-5C-1h | 1389 | 1221 | 0.63 | 0.52 | 2.22 |
CLR-2-5C-1h | 1528 | 1103 | 0.95 | 0.50 | 2.87 |
样品 | SBET/m2·g-1 | Smic/m2·g-1 | Vtol/cm3·g-1 | Vmic/cm3·g-1 | Da/nm |
---|---|---|---|---|---|
CLR-1-10C-0.5h | 1308 | 1103 | 0.61 | 0.46 | 4.73 |
DCLR-1-10C-0.5h | 1673 | 1534 | 0.63 | 0.58 | 1.66 |
样品 | SBET/m2·g-1 | Smic/m2·g-1 | Vtol/cm3·g-1 | Vmic/cm3·g-1 | Da/nm |
---|---|---|---|---|---|
CLR-1-10C-0.5h | 1308 | 1103 | 0.61 | 0.46 | 4.73 |
DCLR-1-10C-0.5h | 1673 | 1534 | 0.63 | 0.58 | 1.66 |
样品 | 灰分 | Fe2O3 | CaO | SO3 | SiO2 | Al2O3 | TiO2 | MgO | Na2O | K2O | 其他 |
---|---|---|---|---|---|---|---|---|---|---|---|
CLR-1-10C-0.5h | 2.54 | 36.37 | 1.31 | 0.63 | 50.14 | 3.62 | 2.44 | 0.47 | 2.81 | 2.00 | 0.21 |
DCLR-1-10C-0.5h | 1.21 | 23.83 | 0.80 | 0.70 | 63.49 | 2.87 | 0.42 | 0.25 | 3.11 | 4.24 | 0.29 |
样品 | 灰分 | Fe2O3 | CaO | SO3 | SiO2 | Al2O3 | TiO2 | MgO | Na2O | K2O | 其他 |
---|---|---|---|---|---|---|---|---|---|---|---|
CLR-1-10C-0.5h | 2.54 | 36.37 | 1.31 | 0.63 | 50.14 | 3.62 | 2.44 | 0.47 | 2.81 | 2.00 | 0.21 |
DCLR-1-10C-0.5h | 1.21 | 23.83 | 0.80 | 0.70 | 63.49 | 2.87 | 0.42 | 0.25 | 3.11 | 4.24 | 0.29 |
项目 | 前体 | 活化剂 | 吸附温度/℃ | 吸附压力/bar | CO2吸附量/% |
---|---|---|---|---|---|
DCLR-1-5C-1h | 液化残渣 | KOH | 40 | 0.15 | 4.47 |
0 | 1 | 27.70 | |||
文献[ | 淀粉/纤维素/木屑 | KOH | 0 | 1 | 25.52 |
文献[ | 莴笋叶 | KOH | 0 | 1 | 26.40 |
文献[ | 亚烟煤 | K2CO3+ CO2 | 0 | 1 | 19.18 |
文献[ | 榛子壳 | NaNH2 | 0 | 1 | 26.00 |
文献[ | 无烟煤 | H2O | 0 | 1 | 12.89 |
文献[ | 咖啡渣 | CO2 | 0 | 1 | 14.08 |
市售活性炭1 | 煤质 | — | 40 | 0.15 | 2.57 |
市售活性炭2 | 椰壳 | — | 40 | 0.15 | 3.48 |
市售活性炭3 | 椰壳 | — | 40 | 0.15 | 2.91 |
项目 | 前体 | 活化剂 | 吸附温度/℃ | 吸附压力/bar | CO2吸附量/% |
---|---|---|---|---|---|
DCLR-1-5C-1h | 液化残渣 | KOH | 40 | 0.15 | 4.47 |
0 | 1 | 27.70 | |||
文献[ | 淀粉/纤维素/木屑 | KOH | 0 | 1 | 25.52 |
文献[ | 莴笋叶 | KOH | 0 | 1 | 26.40 |
文献[ | 亚烟煤 | K2CO3+ CO2 | 0 | 1 | 19.18 |
文献[ | 榛子壳 | NaNH2 | 0 | 1 | 26.00 |
文献[ | 无烟煤 | H2O | 0 | 1 | 12.89 |
文献[ | 咖啡渣 | CO2 | 0 | 1 | 14.08 |
市售活性炭1 | 煤质 | — | 40 | 0.15 | 2.57 |
市售活性炭2 | 椰壳 | — | 40 | 0.15 | 3.48 |
市售活性炭3 | 椰壳 | — | 40 | 0.15 | 2.91 |
1 | 蔡博峰, 李琦, 张贤, 等. 中国二氧化碳捕集、利用与封存 (CCUS) 年度报告: 中国 CCUS 路径研究[R]. 生态环境部环境规划院, 中国科学院武汉岩土力学研究所, 中国 21 世纪议程管理中心, 2021. |
CAI Bofeng, LI Qi, ZHANG Xian, et al. China carbon dioxide capture, utilization and storage (CCUS) annual report: China CCUS pathway study[R]. Institute of Environmental Planning, Ministry of Ecology and Environment, Wuhan Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, China Management Center for Agenda 21, 2021. | |
2 | 宋亚楠. CCUS技术的减排作用与应用前景[J]. 金融纵横, 2021(9): 35-43. |
SONG Yanan. Emission reduction effects and application prospects of CCUS[J]. Financial Perspectives Journal, 2021(9): 35-43. | |
3 | 李禾. 任重道远 CCUS技术体系尚待完善[N]. 科技日报, 2022-09-27(5). |
LI He. The CCUS technology system still needs to be improved[N]. Science and Technology Daily, 2022-09-27(5). | |
4 | 何亮, 王延斌, 张景阳. 厚积薄发 CCUS重点工程加速推进[N]. 科技日报, 2022-09-27(5). |
HE Liang, WANG Yanbing, ZHANG Jingyang. Accelerate the progress of CCUS key projects through thick accumulation and thin development[N]. Science and Technology Daily, 2022-09-27(5). | |
5 | 何亮. 变害为宝 CCUS助力“双碳”目标实现[N]. 科技日报, 2022-09-27(5). |
HE Liang. Turning harm into treasure CCUS helps achieve the “double carbon” goal[N]. Science and Technology Daily, 2022-09-27(5). | |
6 | WANG Baodeng, CUI Qian, ZHANG Guoping, et al. Post-combustion slipstream CO2-capture test facility at Jiangyou Power Plant, Sichuan, China: Facility design and validation using 30% wt monoethanolamine (MEA) testing[J]. Clean Energy, 2020, 4(2): 107-119. |
7 | CUI Qian, WANG Baodeng, ZHAO Xinglei, et al. Post-combustion slipstream CO2-capture test facility at Jiangyou Power Plant, Sichuan, China: Performance of a membrane separation module under dynamic power-plant operations[J]. Clean Energy, 2021, 5(4): 742-755. |
8 | CAO Shicheng, ZHAO Hongyu, HU Deng, et al. Preparation of potassium intercalated carbons by in situ activation and speciation for CO2 capture from flue gas[J]. Journal of CO2 Utilization, 2020, 35: 59-66. |
9 | WANG Baodeng, ZHANG Zhongzheng, ZHU Chenming, et al. Enhancing low pressure CO2 adsorption of solvent-free derived mesoporous carbon by highly dispersed potassium species[J]. RSC Advances, 2016, 6(40): 33580-33588. |
10 | BALSAMO M, BUDINOVA T, ERTO A, et al. CO2 adsorption onto synthetic activated carbon: Kinetic, thermodynamic and regeneration studies[J]. Separation and Purification Technology, 2013, 116: 214-221. |
11 | 刘之琳. 氨基功能化MCM-41材料制备及其二氧化碳吸附性能研究[D]. 北京: 华北电力大学(北京), 2016. |
LIU Zhilin. Preparation and CO2 adsorption performance of amine-functionalized MCM-41[D]. Beijing: North China Electric Power University(Beijing), 2016. | |
12 | SJOSTROM Sharon, SENIOR Constance. Pilot testing of CO2 capture from a coal-fired power plant—Part 2: Results from 1-MWe pilot tests[J]. Clean Energy, 2020, 4(1): 12-25. |
13 | 何利梅, 姜伟丽, 李继聪, 等. CO2吸附材料的研究进展[J]. 石油化工, 2022, 51(1): 83-91. |
HE Limei, JIANG Weili, LI Jicong, et al. Research progress in the adsorption materials of CO2 [J]. Petrochemical Technology, 2022, 51(1): 83-91. | |
14 | MESFER Mohammed K AL. Synthesis and characterization of high-performance activated carbon from walnut shell biomass for CO2 capture[J]. Environmental Science and Pollution Research, 2020, 27(13): 15020-15028. |
15 | ZENG Ganning, LOU Sa, YING Huijuan, et al. Preparation of microporous carbon from Sargassum horneri by hydrothermal carbonization and KOH activation for CO2 capture[J]. Journal of Chemistry, 2018, 2018: 1-11. |
16 | KHUONG Duy Anh, NGUYEN Hong Nam, TSUBOTA Toshiki. Activated carbon produced from bamboo and solid residue by CO2 activation utilized as CO2 adsorbents[J]. Biomass and Bioenergy, 2021, 148: 106039. |
17 | 张建波. 煤直接液化残渣基炭材料的制备及应用[D]. 大连: 大连理工大学, 2013. |
ZHANG Jianbo. Preparation and applications of carbon materials from direct coal liquefaction residue[D]. Dalian: Dalian University of Technology, 2013. | |
18 | 段林娥. 液化残渣在CO2气氛下热转化特性热重研究[D]. 西安: 西北大学, 2015. |
DUAN Lin'e. Thermogravimetric study on thermal conversion characteristics of liquefied residue in CO2 atmosphere.[D]. Xi'an: Northwest University, 2015. | |
19 | 舒成, 李克健, 章序文, 等. 原料预处理对氢氧化钾活化法制备活性炭的影响[J]. 炭素技术, 2014, 33(2): 5-8. |
SHU Cheng, LI Kejian, ZHANG Xuwen, et al. Effects of raw material pretreatment on activated carbons prepared with KOH activation[J]. Carbon Techniques, 2014, 33(2): 5-8. | |
20 | 辛凡文, 李克健, 舒歌平, 等. 预氧化对煤液化沥青制备超级活性炭的影响研究[J]. 煤炭工程, 2017, 49(8): 141-144. |
XIN Fanwen, LI Kejian, SHU Geping, et al. Influence of pre-oxidation to super activated carbon prepared from coal liquefaction asphaltene[J]. Coal Engineering, 2017, 49(8): 141-144. | |
21 | 罗化峰, 乔元栋, 李通达, 等. 煤液化残渣基炭材料吸附瓦斯实验研究[J]. 煤炭技术, 2020, 39(1): 89-92. |
LUO Huafeng, QIAO Yuandong, LI Tongda, et al. Experimental study on adsorption of gas by coal liquefaction residue based carbon material[J]. Coal Technology, 2020, 39(1): 89-92. | |
22 | 徐春霞. 煤直接液化残渣半焦CO2气化特性及动力学研究[J]. 煤炭加工与综合利用, 2021(7): 62-67. |
XU Chunxia. Study on characteristics anddynamics of direct liquefaction residue semi-coke gasification with CO2 [J]. Coal Processing & Comprehensive Utilization, 2021(7): 62-67. | |
23 | 李肖, 李昱琳, 田晓冬, 等. 煤液化残渣的性质及应用现状[J]. 化学研究, 2020, 31(1): 9-16, 95. |
LI Xiao, LI Yulin, TIAN Xiaodong, et al. Properties and application of coal liquefaction residues[J]. Chemical Research, 2020, 31(1): 9-16, 95. | |
24 | LEE Seul-Yi, PARK Soo-Jin. Determination of the optimal pore size for improved CO2 adsorption in activated carbon fibers[J]. Journal of Colloid and Interface Science, 2013, 389(1): 230-235. |
25 | JANG Eunji, CHOI Seung Wan, HONG Seok-Min, et al. Development of a cost-effective CO2 adsorbent from petroleum coke via KOH activation[J]. Applied Surface Science, 2018, 429: 62-71. |
26 | KIM Min-Jeong, CHOI Seung Wan, KIM Hyunwook, et al. Simple synthesis of spent coffee ground-based microporous carbons using K2CO3 as an activation agent and their application to CO2 capture[J]. Chemical Engineering Journal, 2020, 397: 125404. |
27 | SEVILLA Marta, FUERTES Antonio B. Sustainable porous carbons with a superior performance for CO2 capture[J]. Energy & Environmental Science, 2011, 4(5): 1765-1771. |
28 | WANG Jiacheng, HEERWIG Andreas, LOHE Martin R, et al. Fungi-based porous carbons for CO2 adsorption and separation[J]. Journal of Materials Chemistry, 2012, 22(28): 13911-13913. |
29 | WANG Lijie, SUN Fei, HAO Fei, et al. A green trace K2CO3 induced catalytic activation strategy for developing coal-converted activated carbon as advanced candidate for CO2 adsorption and supercapacitors[J]. Chemical Engineering Journal, 2020, 383: 123205. |
30 | LIU Shenfang, MA Rui, HU Xin, et al. CO2 adsorption on hazelnut-shell-derived nitrogen-doped porous carbons synthesized by single-step sodium amide activation[J]. Industrial & Engineering Chemistry Research, 2020, 59(15): 7046-7053. |
31 | 张双全, 马蓉, 朱文魁, 等. 用于吸附分离CO2的活性炭研究[J]. 中国矿业大学学报, 2004, 33(6): 683-686. |
ZHANG Shuangquan, MA Rong, ZHU Wenkui, et al. Research on activated carbon for separating CO2 by adsorption[J]. Journal of China University of Mining & Technology, 2004, 33(6): 683-686. | |
32 | PLAZA M G, GONZÁLEZ A S, PEVIDA C, et al. Valorisation of spent coffee grounds as CO2 adsorbents for postcombustion capture applications[J]. Applied Energy, 2012, 99: 272-279. |
[1] | YANG Hanyue, KONG Lingzhen, CHEN Jiaqing, SUN Huan, SONG Jiakai, WANG Sicheng, KONG Biao. Decarbonization performance of downflow tubular gas-liquid contactor of microbubble-type [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 197-204. |
[2] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
[3] | ZHENG Qian, GUAN Xiushuai, JIN Shanbiao, ZHANG Changming, ZHANG Xiaochao. Photothermal catalysis synthesis of DMC from CO2 and methanol over Ce0.25Zr0.75O2 solid solution [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 319-327. |
[4] | DAI Huantao, CAO Lingyu, YOU Xinxiu, XU Haoliang, WANG Tao, XIANG Wei, ZHANG Xueyang. Adsorption properties of CO2 on pomelo peel biochar impregnated by lignin [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 356-363. |
[5] | CHEN Chongming, CHEN Qiu, GONG Yunqian, CHE Kai, YU Jinxing, SUN Nannan. Research progresses on zeolite-based CO2 adsorbents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 411-419. |
[6] | SUN Yuyu, CAI Xinlei, TANG Jihai, HUANG Jingjing, HUANG Yiping, LIU Jie. Optimization and energy-saving of a reactive distillation process for the synthesis of methyl methacrylate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 56-63. |
[7] | YANG Ying, HOU Haojie, HUANG Rui, CUI Yu, WANG Bing, LIU Jian, BAO Weiren, CHANG Liping, WANG Jiancheng, HAN Lina. Coal tar phenol-based carbon nanosphere prepared by Stöber method for adsorption of CO2 [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5011-5018. |
[8] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
[9] | LIU Yi, FANG Qiang, ZHONG Dazhong, ZHAO Qiang, LI Jinping. Cu facets regulation of Ag/Cu coupled catalysts for electrocatalytic reduction of carbon dioxide [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4136-4142. |
[10] | HUANG Yufei, LI Ziyi, HUANG Yangqiang, JIN Bo, LUO Xiao, LIANG Zhiwu. Research progress on catalysts for photocatalytic CO2 and CH4 reforming [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4247-4263. |
[11] | LOU Baohui, WU Xianhao, ZHANG Chi, CHEN Zhen, FENG Xiangdong. Advances in nanofluid for CO2 absorption and separation [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3802-3815. |
[12] | BAI Yadi, DENG Shuai, ZHAO Ruikai, ZHAO Li, YANG Yingxia. Exploration on standardized test scheme and experimental performance of temperature swing adsorption carbon capture unit [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3834-3846. |
[13] | LU Yang, ZHOU Jinsong, ZHOU Qixin, WANG Tang, LIU Zhuang, LI Bohao, ZHOU Lingtao. Leaching mechanism of Hg-absorption products on CeO2/TiO2 sorbentsin syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3875-3883. |
[14] | LU Shijian, ZHANG Yuanyuan, WU Wenhua, YANG Fei, LIU Ling, KANG Guojun, LI Qingfang, CHEN Hongfu, WANG Ning, WANG Feng, ZHANG Juanjuan. Health risk assessment of nitrosamine pollutant diffusion in a million ton CO2 capture project [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3209-3216. |
[15] | WANG Jiuheng, RONG Nai, LIU Kaiwei, HAN Long, SHUI Taotao, WU Yan, MU Zhengyong, LIAO Xuqing, MENG Wenjia. Enhanced CO2 capture performance and strength of cellulose-templated CaO-based pellets with steam reactivation [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3217-3225. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |