Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (12): 6383-6398.DOI: 10.16085/j.issn.1000-6613.2023-0140
• Materials science and technology • Previous Articles
WANG Chengjun1,2,3,4(), WANG Linqiang5, MA Jing1,2,3,4, MENG Shujuan1,2,3,4, DUAN Zhiying1,2,3,4, SUN Chufeng1,2,3,4, SHEN Tao1,2,3,4, SU Qiong1,2,3,4()
Received:
2023-02-03
Revised:
2023-05-05
Online:
2024-01-08
Published:
2023-12-25
Contact:
SU Qiong
王成君1,2,3,4(), 汪林强5, 马晶1,2,3,4, 孟淑娟1,2,3,4, 段志英1,2,3,4, 孙初锋1,2,3,4, 申涛1,2,3,4, 苏琼1,2,3,4()
通讯作者:
苏琼
作者简介:
王成君(1985—),女,博士,副教授,研究方向为相变储能材料。E-mail:573728404@qq.com。
基金资助:
CLC Number:
WANG Chengjun, WANG Linqiang, MA Jing, MENG Shujuan, DUAN Zhiying, SUN Chufeng, SHEN Tao, SU Qiong. Research progress of carbon matrix composite phase change materials[J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6383-6398.
王成君, 汪林强, 马晶, 孟淑娟, 段志英, 孙初锋, 申涛, 苏琼. 碳基复合相变材料的研究进展[J]. 化工进展, 2023, 42(12): 6383-6398.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0140
碳材料 | 优点 | 缺点 |
---|---|---|
碳纳米管 | 负载高,导电率高,太阳能吸收能力强,转换效率高 | 制备工艺复杂,易团聚,成本高 |
碳纤维 | 负载率高,导电性好,成本低 | 易团聚 |
石墨 | 导电性高,成本低,力学性能好 | 制备工艺复杂 |
石墨烯/GO/rGO | 比表面积大,负载率高,高导电性,太阳能吸收能力强,转换效率高 | 制备工艺复杂,易团聚,成本高 |
MOF衍生炭 | 高孔隙率,比表面积大,孔结构可调,负载率高,转换效率高 | 高温易塌陷,制备工艺复杂,低热导率,成本高 |
生物质炭 | 原料来源广泛,绿色无污染,成本低 | 转化效率较低,热导率低 |
膨胀石墨 | 孔隙体积大,密度小,负载大,电导率高,成本低 | 膨胀系数大 |
碳气凝胶 | 形状稳定,孔隙率高,力学性能好 | 光热转化效率不高 |
碳材料 | 优点 | 缺点 |
---|---|---|
碳纳米管 | 负载高,导电率高,太阳能吸收能力强,转换效率高 | 制备工艺复杂,易团聚,成本高 |
碳纤维 | 负载率高,导电性好,成本低 | 易团聚 |
石墨 | 导电性高,成本低,力学性能好 | 制备工艺复杂 |
石墨烯/GO/rGO | 比表面积大,负载率高,高导电性,太阳能吸收能力强,转换效率高 | 制备工艺复杂,易团聚,成本高 |
MOF衍生炭 | 高孔隙率,比表面积大,孔结构可调,负载率高,转换效率高 | 高温易塌陷,制备工艺复杂,低热导率,成本高 |
生物质炭 | 原料来源广泛,绿色无污染,成本低 | 转化效率较低,热导率低 |
膨胀石墨 | 孔隙体积大,密度小,负载大,电导率高,成本低 | 膨胀系数大 |
碳气凝胶 | 形状稳定,孔隙率高,力学性能好 | 光热转化效率不高 |
支撑材料 | 相变材料 | 负载率/% | 熔融温度/℃ | 熔融焓/J·g-1 | 凝固温度/℃ | 凝固焓/J·g-1 | 热导率/W·m-1·K-1 | 参考文献 |
---|---|---|---|---|---|---|---|---|
SWCNT | PEG | 98 | 56.7 | 165.4 | 42.7 | 151.6 | 3.43 | [ |
MWCNTs | TDA ODA | 35.8 50.6 | 261.1 274 | 27.6 41.6 | 264.5 273.8 | 0.45 0.397 | [ | |
CNTs海绵 | PEG | 90 | 59.47 | 132.07 | 41.8 | 128.7 | 2.4 | [ |
CNTs阵列 | RT100 | 87.5 | 195.5 | 104.9 | 193.1 | 4.17(Y,X方向)/12.3(Z方向) | [ | |
CNS | 石蜡 | 40.8 | 248.8 | 32.9 | 247.7 | 1.85 | [ |
支撑材料 | 相变材料 | 负载率/% | 熔融温度/℃ | 熔融焓/J·g-1 | 凝固温度/℃ | 凝固焓/J·g-1 | 热导率/W·m-1·K-1 | 参考文献 |
---|---|---|---|---|---|---|---|---|
SWCNT | PEG | 98 | 56.7 | 165.4 | 42.7 | 151.6 | 3.43 | [ |
MWCNTs | TDA ODA | 35.8 50.6 | 261.1 274 | 27.6 41.6 | 264.5 273.8 | 0.45 0.397 | [ | |
CNTs海绵 | PEG | 90 | 59.47 | 132.07 | 41.8 | 128.7 | 2.4 | [ |
CNTs阵列 | RT100 | 87.5 | 195.5 | 104.9 | 193.1 | 4.17(Y,X方向)/12.3(Z方向) | [ | |
CNS | 石蜡 | 40.8 | 248.8 | 32.9 | 247.7 | 1.85 | [ |
支撑材料 | 相变材料 | 负载率/% | 熔融温度/℃ | 熔融焓/J·g-1 | 凝固温度/℃ | 凝固焓/J·g-1 | 热导率/W·m-1·K-1 | 参考文献 |
---|---|---|---|---|---|---|---|---|
CNPS | PW | 38.1 | 147.9 | 51.5 | 153.1 | 1.42 | [ | |
rGO/GNPs | 1-十八醇 | 86.7 | 196.2 | 234.1 | 9.50 | [ | ||
GH | PW | 57.3 | 145.2 | 47.6 | 139.2 | 1.82 | [ | |
AGAS | PW | 179.8 | 104.9 | 184.5 | 8.87(纵向)/2.68(横向) | [ | ||
GCNT | PEG | 80 | 50.31 | 128.7 | 32.9 | [ |
支撑材料 | 相变材料 | 负载率/% | 熔融温度/℃ | 熔融焓/J·g-1 | 凝固温度/℃ | 凝固焓/J·g-1 | 热导率/W·m-1·K-1 | 参考文献 |
---|---|---|---|---|---|---|---|---|
CNPS | PW | 38.1 | 147.9 | 51.5 | 153.1 | 1.42 | [ | |
rGO/GNPs | 1-十八醇 | 86.7 | 196.2 | 234.1 | 9.50 | [ | ||
GH | PW | 57.3 | 145.2 | 47.6 | 139.2 | 1.82 | [ | |
AGAS | PW | 179.8 | 104.9 | 184.5 | 8.87(纵向)/2.68(横向) | [ | ||
GCNT | PEG | 80 | 50.31 | 128.7 | 32.9 | [ |
支撑材料 | 比表面积/cm3·g-1 | 相变材料 | 负载率/% | 熔融温度/°C | 熔融焓/J·g-1 | 凝固温度/°C | 凝固焓/J·g-1 | 潜热保持率/% | 参考文献 |
---|---|---|---|---|---|---|---|---|---|
Cr-MIL-101-NH2 | 1998 | SA | 70 | 71 | 120.5 | 56.92 | 117.59 | [ | |
HPC | 2551 | PEG | 92.5 | 60.03 | 162 | 98.2 | [ | ||
NPC-Al | 2193.5 | PEG | 55.4 | 168.3 | 89.3 | [ | |||
rGO@MOF-5-C | 2726.9 | SA | 90 | 71.6 | 168.7 | 62.4 | 162.2 | [ | |
MOF-5-PC/ZnO | 244.03 | PW | 90 | 80.37 | [ |
支撑材料 | 比表面积/cm3·g-1 | 相变材料 | 负载率/% | 熔融温度/°C | 熔融焓/J·g-1 | 凝固温度/°C | 凝固焓/J·g-1 | 潜热保持率/% | 参考文献 |
---|---|---|---|---|---|---|---|---|---|
Cr-MIL-101-NH2 | 1998 | SA | 70 | 71 | 120.5 | 56.92 | 117.59 | [ | |
HPC | 2551 | PEG | 92.5 | 60.03 | 162 | 98.2 | [ | ||
NPC-Al | 2193.5 | PEG | 55.4 | 168.3 | 89.3 | [ | |||
rGO@MOF-5-C | 2726.9 | SA | 90 | 71.6 | 168.7 | 62.4 | 162.2 | [ | |
MOF-5-PC/ZnO | 244.03 | PW | 90 | 80.37 | [ |
支撑材料 | 相变材料 | 负载率/% | 熔融温度/°C | 熔融焓/J·g-1 | 凝固温度/°C | 凝固焓/J·g-1 | 潜热保持率/% | 参考文献 |
---|---|---|---|---|---|---|---|---|
AGP | PA | 100 | 60.2 | 52.5 | 53 | 51.9 | 100 | [ |
SCGS | PEG | 60.3 | 63 | 104.7 | 36 | 99.9 | 98.6 | [ |
GPC | PW | 39.53 | 157 | 36.9 | 162.7 | 80.1 | [ | |
GPPS | PEG | 95.38 | 58.3 | 162.4 | 38.9 | 152.6 | 大于90 | [ |
芦苇杆生物炭 | PW | 93.45 | 68.67 | 141.47 | 36.29 | 144.12 | [ |
支撑材料 | 相变材料 | 负载率/% | 熔融温度/°C | 熔融焓/J·g-1 | 凝固温度/°C | 凝固焓/J·g-1 | 潜热保持率/% | 参考文献 |
---|---|---|---|---|---|---|---|---|
AGP | PA | 100 | 60.2 | 52.5 | 53 | 51.9 | 100 | [ |
SCGS | PEG | 60.3 | 63 | 104.7 | 36 | 99.9 | 98.6 | [ |
GPC | PW | 39.53 | 157 | 36.9 | 162.7 | 80.1 | [ | |
GPPS | PEG | 95.38 | 58.3 | 162.4 | 38.9 | 152.6 | 大于90 | [ |
芦苇杆生物炭 | PW | 93.45 | 68.67 | 141.47 | 36.29 | 144.12 | [ |
1 | ZHANG Shuai, FENG Daili, SHI Lei, et al. A review of phase change heat transfer in shape-stabilized phase change materials (ss-PCMs) based on porous supports for thermal energy storage[J]. Renewable and Sustainable Energy Reviews, 2021, 135: 110127. |
2 | REN Huaying, TANG Miao, GUAN Baolu, et al. Hierarchical graphene foam for efficient omnidirectional solar-thermal energy conversion[J]. Advanced Materials, 2017, 29(38): 1702590. |
3 | 王成君, 苏琼, 段志英, 等. 基于多孔支撑体的形状稳定复合相变储能材料的研究进展[J]. 化工进展, 2021, 40(3): 1483-1494. |
WANG Chengjun, SU Qiong, DUAN Zhiying, et al. Research progress of shape-stable composite phase change energy storage materials based on porous supports[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1483-1494. | |
4 | WEI Yanhong, LI Juanjuan, SUN Furong, et al. Leakage-proof phase change composites supported by biomass carbon aerogels from succulents[J]. Green Chemistry, 2018, 20(8): 1858-1865. |
5 | LIU Lu, ZHANG Yu’ang, ZHANG Shufen, et al. Advanced phase change materials from natural perspectives: Structural design and functional applications[J]. Advanced Science, 2023, 10(22): 2207652. |
6 | CHINNASAMY Veerakumar, Jaehyeok HEO, JUNG Sungyong, et al. Shape stabilized phase change materials based on different support structures for thermal energy storage applications—A review[J]. Energy, 2023, 262: 125463. |
7 | YUAN K J, SHI J M, AFTAB W, et al. Engineering the thermal conductivity of functional phase-change materials for heat energy conversion, storage, and utilization[J]. Advanced Functional Materials, 2020, 30(8): 1904228. |
8 | LOEB A L. Thermal conductivity: VIII, A theory of thermal conductivity of porous materials[J]. Journal of the American Ceramic Society, 1954, 37(2): 96-99. |
9 | MALDOVAN Martin. Sound and heat revolutions in phononics[J]. Nature, 2013, 503(7475): 209-217. |
10 | MESCHKE M, GUICHARD W, PEKOLA J P. Single-mode heat conduction by photons[J]. Nature, 2006, 444(7116): 187-190. |
11 | VÖLKLEIN F, REITH H, CORNELIUS T W, et al. The experimental investigation of thermal conductivity and the Wiedemann-Franz law for single metallic nanowires[J]. Nanotechnology, 2009, 20(32): 325706. |
12 | WU Shaofei, YAN Ting, KUAI Zihan, et al. Thermal conductivity enhancement on phase change materials for thermal energy storage: A review[J]. Energy Storage Materials, 2020, 25: 251-295. |
13 | 林文珠, 凌子夜, 方晓明, 等. 相变储热的传热强化技术研究进展[J]. 化工进展, 2021, 40(9): 5166-5179. |
LIN Wenzhu, LING Ziye, FANG Xiaoming, et al. Research progress on heat transfer of phase change material heat storage technology[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 5166-5179. | |
14 | SHIN Sunmi, WANG Qingyang, LUO Jian, et al. Advanced materials for high-temperature thermal transport[J]. Advanced Functional Materials, 2020, 30(8): 1904815. |
15 | DONG Zhijun, SUN Bing, ZHU Hui, et al. A review of aligned carbon nanotube arrays and carbon/carbon composites: Fabrication, thermal conduction properties and applications in thermal management[J]. New Carbon Materials, 2021, 36(5): 873-892. |
16 | CHEN Xiao, CHENG Piao, TANG Zhaodi, et al. Carbon-based composite phase change materials for thermal energy storage, transfer, and conversion[J]. Advanced Science, 2021, 8(9): 2001274. |
17 | GUO Xiaoxiao, CHENG Shujian, CAI Weiwei, et al. A review of carbon-based thermal interface materials: Mechanism, thermal measurements and thermal properties[J]. Materials & Design, 2021, 209: 109936. |
18 | GU Xiaokun, WEI Yujie, YIN Xiaobo, et al. Colloguium: Phononic thermal properties of two-dimensional materials[J]. Rev.Mod.Phys., 2018, 90(4): 041002. |
19 | PAPAGEORGIOU D G, KINLOCH I A, YOUNG R J. Mechanical properties of graphene and graphene-based nanocomposites[J]. Progress in Materials Science, 2017, 90: 75-127. |
20 | BORENSTEIN Arie, HANNA Ortal, ATTIAS Ran, et al. Carbon-based composite materials for supercapacitor electrodes: A review[J]. Journal of Materials Chemistry A, 2017, 5(25): 12653-12672. |
21 | TONG Xuan, LI Nianqi, ZENG Min, et al. Organic phase change materials confined in carbon-based materials for thermal properties enhancement: Recent advancement and challenges[J]. Renewable and Sustainable Energy Reviews, 2019, 108: 398-422. |
22 | DAI Hongjie. Carbon nanotubes: Opportunities and challenges[J]. Surface Science, 2002, 500(1/2/3): 218-241. |
23 | BALANDIN A A. Thermal properties of graphene and nanostructured carbon materials[J]. Nature Materials, 2011, 10(8): 569-581. |
24 | BERBER S, KWON Y K, TOMANEK D. Unusually high thermal conductivity of carbon nanotubes[J]. Physical Review Letters, 2000, 84(20): 4613-4616. |
25 | LI Min, MU Boyuan. Effect of different dimensional carbon materials on the properties and application of phase change materials: A review[J]. Applied Energy, 2019, 242: 695-715. |
26 | JARA A D, BETEMARIAM A, WOLDETINSAE G, et al. Purification, application and current market trend of natural graphite: A review[J]. International Journal of Mining Science and Technology, 2019, 29(5): 671-689. |
27 | STOLLER M D, SUNGJIN P, ZHU Y, et al. Graphene-based ultracapacitors[J]. Nano Letters, 2008, 8(10): 3498-3502. |
28 | BALANDIN A A, GHOSH Suchismita, BAO W Z, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 2008, 8(3): 902-907. |
29 | HUANG Xiubing, CHEN Xiao, LI Ang, et al. Shape-stabilized phase change materials based on porous supports for thermal energy storage applications[J]. Chemical Engineering Journal, 2019, 356: 641-661. |
30 | CHEN Xiao, GAO Hongyi, TANG Zhaodi, et al. Optimization strategies of composite phase change materials for thermal energy storage, transfer, conversion and utilization[J]. Energy & Environmental Science, 2020, 13(12): 4498-4535. |
31 | QIAN Tingting, LI Jinhong, FENG Wuwei, et al. Single-walled carbon nanotube for shape stabilization and enhanced phase change heat transfer of polyethylene glycol phase change material[J]. Energy Conversion and Management, 2017, 143: 96-108. |
32 | WANG Shuo, WANG Chengjun, CHEN Tao, et al. Fatty amines/oxidized multi-walled carbon nanotubes phase change composites with enhanced thermal properties[J]. Composites Communications, 2021, 25: 100749. |
33 | KUZIEL A W, DZIDO G, TURCZYN R, et al. Ultra-long carbon nanotube-paraffin composites of record thermal conductivity and high phase change enthalpy among paraffin-based heat storage materials[J]. Journal of Energy Storage, 2021, 36: 102396. |
34 | CAO Ruirui, CHEN Sai, WANG Yuzhou, et al. Functionalized carbon nanotubes as phase change materials with enhanced thermal, electrical conductivity, light-to-thermal, and electro-to-thermal performances[J]. Carbon, 2019, 149: 263-272. |
35 | AFTAB Waseem, MAHMOOD Asif, GUO Wenhan, et al. Polyurethane-based flexible and conductive phase change composites for energy conversion and storage[J]. Energy Storage Materials, 2019, 20: 401-409. |
36 | ZHANG Qi, LIU Jian. Anisotropic thermal conductivity and photodriven phase change composite based on RT100 infiltrated carbon nanotube array[J]. Solar Energy Materials and Solar Cells, 2019, 190: 1-5. |
37 | LI Ang, Guangtong HAI, CHENG Piao, et al. Molecular insights into the interaction mechanism between C18 phase change materials and methyl-modified carbon nanotubes[J]. Ceramics International, 2021, 47(16): 23564-23570. |
38 | LU Xiang, ZHENG Yongfeng, YANG Jinglei, et al. Multifunctional paraffin wax/carbon nanotube sponge composites with simultaneous high-efficient thermal management and electromagnetic interference shielding efficiencies for electronic devices[J]. Composites Part B: Engineering, 2020, 199: 108308. |
39 | CHEN Xiao, GAO Hongyi, Guangtong HAI, et al. Carbon nanotube bundles assembled flexible hierarchical framework based phase change material composites for thermal energy harvesting and thermotherapy[J]. Energy Storage Materials, 2020, 26: 129-137. |
40 | HUANG Xiang, ALVA Guruprasad, LIU Lingkun, et al. Microstructure and thermal properties of cetyl alcohol/high density polyethylene composite phase change materials with carbon fiber as shape-stabilized thermal storage materials[J]. Applied Energy, 2017, 200: 19-27. |
41 | NOMURA Takahiro, TABUCHI Kazuki, ZHU Chunyu, et al. High thermal conductivity phase change composite with percolating carbon fiber network[J]. Applied Energy, 2015, 154: 678-685. |
42 | WU Xinfeng, SHI Shanshan, WANG Ying, et al. Polyethylene glycol-calcium chloride phase change materials with high thermal conductivity and excellent shape stability by introducing three-dimensional carbon/carbon fiber felt[J]. ACS Omega, 2021, 6(48): 33033-33045. |
43 | LIU Zilu, WEI Huipeng, TANG Bingtao, et al. Novel light-driven CF/PEG/SiO2 composite phase change materials with high thermal conductivity[J]. Solar Energy Materials and Solar Cells, 2018, 174: 538-544. |
44 | ZHANG Qiang, LUO Zhiling, GUO Qilin, et al. Preparation and thermal properties of short carbon fibers/erythritol phase change materials[J]. Energy Conversion and Management, 2017, 136: 220-228. |
45 | SHENG Nan, ZHU Ruijie, DONG Kaixin, et al. Vertically aligned carbon fibers as supporting scaffolds for phase change composites with anisotropic thermal conductivity and good shape stability[J]. Journal of Materials Chemistry A, 2019, 7(9): 4934-4940. |
46 | JIANG Zhao, OUYANG Ting, YANG Yang, et al. Thermal conductivity enhancement of phase change materials with form-stable carbon bonded carbon fiber network[J]. Materials & Design, 2018, 143: 177-184. |
47 | WANG Chengjun, WANG Linqiang, LIANG Weidong, et al. Enhanced light-to-thermal conversion performance of all-carbon aerogels based form-stable phase change material composites[J]. Journal of Colloid and Interface Science, 2022, 605: 60-70. |
48 | WU Haiyan, LI Songtai, SHAO Yaowen, et al. Melamine foam/reduced graphene oxide supported form-stable phase change materials with simultaneous shape memory property and light-to-thermal energy storage capability[J]. Chemical Engineering Journal, 2020, 379: 122373. |
49 | XUE Fei, JIN Xinzheng, WANG Wenyan, et al. Melamine foam and cellulose nanofiber co-mediated assembly of graphene nanoplatelets to construct three-dimensional networks towards advanced phase change materials[J]. Nanoscale, 2020, 12(6): 4005-4017. |
50 | LIU Pengfei, AN Fei, LU Xiaoying, et al. Highly thermally conductive phase change composites with excellent solar-thermal conversion efficiency and satisfactory shape stability on the basis of high-quality graphene-based aerogels[J]. Composites Science and Technology, 2021, 201: 108492. |
51 | YANG Jie, QI Guoqiang, BAO Ruiying, et al. Hybridizing graphene aerogel into three-dimensional graphene foam for high-performance composite phase change materials[J]. Energy Storage Materials, 2018, 13: 88-95. |
52 | KONG Qingqiang, JIA Hui, XIE Lijing, et al. Ultra-high temperature graphitization of three-dimensional large-sized graphene aerogel for the encapsulation of phase change materials[J]. Composites Part A: Applied Science and Manufacturing, 2021, 145: 106391. |
53 | MIN Peng, LIU Jie, LI Xiaofeng, et al. Thermally conductive phase change composites featuring anisotropic graphene aerogels for real-time and fast-charging solar-thermal energy conversion[J]. Advanced Functional Materials, 2018, 28(51): 1805365. |
54 | YU Zepei, FENG Yanhui, FENG Daili, et al. Thermal properties of three-dimensional hierarchical porous graphene foam-carbon nanotube hybrid structure composites with phase change materials[J]. Microporous and Mesoporous Materials, 2021, 312: 110781. |
55 | YAN Xiaoxin, ZHAO Haibo, FENG Yanhui, et al. Excellent heat transfer and phase transformation performance of erythritol/graphene composite phase change materials[J]. Composites Part B: Engineering, 2022, 228: 109435. |
56 | FENG Biao, FAN Liwu, ZENG Yi, et al. Atomistic insights into the effects of hydrogen bonds on the melting process and heat conduction of erythritol as a promising latent heat storage material[J]. International Journal of Thermal Sciences, 2019, 146: 106103. |
57 | LIN Yaxue, ZHU Chuqiao, ALVA Guruprasad, et al. Palmitic acid/polyvinyl butyral/expanded graphite composites as form-stable phase change materials for solar thermal energy storage[J]. Applied Energy, 2018, 228: 1801-1809. |
58 | WANG Tingyu, JIANG Yan, HUANG Jin, et al. High thermal conductive paraffin/calcium carbonate phase change microcapsules based composites with different carbon network[J]. Applied Energy, 2018, 218: 184-191. |
59 | KENISARIN M, MAHKAMOV K, KAHWASH F, et al. Enhancing thermal conductivity of paraffin wax 53-57℃ using expanded graphite[J]. Solar Energy Materials and Solar Cells, 2019, 200: 110026. |
60 | MA Chao, WANG Jing, WU Yu, et al. Characterization and thermophysical properties of erythritol/expanded graphite as phase change material for thermal energy storage[J]. Journal of Energy Storage, 2022, 46: 103864. |
61 | WANG Chengjun, LIANG Weidong, TANG Zuoqun, et al. Enhanced light-thermal conversion efficiency of mixed clay base phase change composites for thermal energy storage[J]. Applied Clay Science, 2020, 189: 105535. |
62 | LI Dan, CHENG Xiaomin, LI Yuanyuan, et al. Effect of MOF derived hierarchical Co3O4/expanded graphite on thermal performance of stearic acid phase change material[J]. Solar Energy, 2018, 171: 142-149. |
63 | ZHANG P, XIAO X, MA Z W. A review of the composite phase change materials: Fabrication, characterization, mathematical modeling and application to performance enhancement[J]. Applied Energy, 2016, 165: 472-510. |
64 | WANG K, YAN T, ZHAO Y M, et al. Preparation and thermal properties of palmitic acid @ZnO/expanded graphite composite phase change material for heat storage[J]. Energy, 2022, 242: 122972. |
65 | LIN Xiangwei, ZHANG Xuelai, LIU Lu, et al. Polymer/expanded graphite-based flexible phase change material with high thermal conductivity for battery thermal management[J]. Journal of Cleaner Production, 2022, 331: 130014. |
66 | LIU Changhui, SONG Yan, XU Ze, et al. Highly efficient thermal energy storage enabled by a hierarchical structured hypercrosslinked polymer/expanded graphite composite[J]. International Journal of Heat and Mass Transfer, 2020, 148: 119068. |
67 | DU Wenqing, FEI Hua, PAN Yucheng, et al. Development of capric acid-stearic acid-palmitic acid low-eutectic phase change material with expanded graphite for thermal energy storage[J]. Construction and Building Materials, 2022, 320: 126309. |
68 | WEN Ruilong, ZHU Shengbo, WU Maomao, et al. Design and preparation of Ag modified expanded graphite based composite phase change materials with enhanced thermal conductivity and light-to-thermal properties[J]. Journal of Energy Storage, 2021, 41: 102936. |
69 | Avia OHAYON-LAVI, LAVI Adi, ALATAWNA Amr, et al. Graphite-based shape-stabilized composites for phase change material applications[J]. Renewable Energy, 2021, 167: 580-590. |
70 | WU Si, LI Tingxian, TONG Zhen, et al. High-performance thermally conductive phase change composites by large-size oriented graphite sheets for scalable thermal energy harvesting[J]. Advanced Materials, 2019, 31(49): e1905099. |
71 | WU Si, LI Tingxian, WU Minqiang, et al. Highly thermally conductive and flexible phase change composites enabled by polymer/graphite nanoplatelet-based dual networks for efficient thermal management[J]. Journal of Materials Chemistry A, 2020, 8(38): 20011-20020. |
72 | ZHAO Chengzhi, GUO Pan, SHENG Nan, et al. Cloth-derived anisotropic carbon scroll attached with 2D oriented graphite layers for supporting phase change material with efficient thermal storage[J]. Chemical Engineering Journal, 2023, 454: 139999. |
73 | LI Chuanchang, XIE Baoshan, CHEN Deliang, et al. Ultrathin graphite sheets stabilized stearic acid as a composite phase change material for thermal energy storage[J]. Energy, 2019, 166: 246-255. |
74 | LI Tingxian, WU Minqiang, WU Si, et al. Highly conductive phase change composites enabled by vertically-aligned reticulated graphite nanoplatelets for high-temperature solar photo/electro-thermal energy conversion, harvesting and storage[J]. Nano Energy, 2021, 89: 106338. |
75 | LUAN Yi, YANG Ming, MA Qianqian, et al. Introduction of an organic acid phase changing material into metal-organic frameworks and the study of its thermal properties[J]. Journal of Materials Chemistry A, 2016, 4(20): 7641-7649. |
76 | LI W, THIRUMURUGAN A, BARTON P T, et al. Mechanical tunability via hydrogen bonding in metal-organic frameworks with the perovskite architecture[J]. Journal of the American Chemical Society, 2014, 136(22): 7801-7804. |
77 | TANG Jia, YANG Ming, DONG Wenjun, et al. Highly porous carbons derived from MOFs for shape-stabilized phase change materials with high storage capacity and thermal conductivity[J]. RSC Advances, 2016, 6(46): 40106-40114. |
78 | ATINAFU D G, DONG W, HOU C, et al. A facile one-step synthesis of porous N-doped carbon from MOF for efficient thermal energy storage capacity of shape-stabilized phase change materials[J]. Materials Today Energy, 2019, 12: 239-249. |
79 | ATINAFU D G, DONG W, HUANG X, et al. Introduction of organic-organic eutectic PCM in mesoporous N-doped carbons for enhanced thermal conductivity and energy storage capacity[J]. Applied Energy, 2018, 211: 1203-1215. |
80 | CHEN Xiao, GAO Hongyi, YANG Mu, et al. Highly graphitized 3D network carbon for shape-stabilized composite PCMs with superior thermal energy harvesting[J]. Nano Energy, 2018, 49: 86-94. |
81 | LIN Yaxue, JIA Yuting, ALVA Guruprasad, et al. Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 2730-2742. |
82 | LI Ang, DONG Cheng, DONG Wenjun, et al. Hierarchical 3D reduced graphene porous-carbon-based PCMs for superior thermal energy storage performance[J]. ACS Applied Materials & Interfaces, 2018, 10(38): 32093-32101. |
83 | LI A, WAN Y, GAO Y, et al. MOF-derived hierarchical carbon/ZnO hybrid synergistically boosts photothermal conversion and storage capability of phase change materials[J]. Materials Today Nano, 2022, 20: 100277. |
84 | WANG Ziting, ZHANG Maoqing, MA Weiting, et al. Application of carbon materials in aqueous zinc ion energy storage devices[J]. Small, 2021, 17(19): e2100219. |
85 | WANG Chengjun, LIANG Weidong, YANG Yueyue, et al. Biomass carbon aerogels based shape-stable phase change composites with high light-to-thermal efficiency for energy storage[J]. Renewable Energy, 2020, 153: 182-192. |
86 | LIN Fankai, LIU Xianjie, LENG Guoqing, et al. Grid structure phase change composites with effective solar/electro-thermal conversion for multi-functional thermal application[J]. Carbon, 2023, 201: 1001-1010. |
87 | ZHANG Qingfeng, XIA Tingfeng, ZHANG Qihan, et al. Biomass homogeneity reinforced carbon aerogels derived functional phase‐change materials for solar-thermal energy conversion and storage[J]. Energy & Environmental Materials, 2023, 6(1): 164-176. |
88 | ZHANG Xiaoguang, ZHANG Haojie, LIANG Qianwei, et al. Resource utilization of solid waste in the field of phase change thermal energy storage[J]. Journal of Energy Storage, 2023, 58: 106362. |
89 | LUO Yue, ZHANG Feng, LI Chongchong, et al. Biomass-based shape-stable phase change materials supported by garlic peel-derived porous carbon for thermal energy storage[J]. Journal of Energy Storage, 2022, 46: 103929. |
90 | HU Xinpeng, HUANG Haowei, HU Yubin, et al. Novel bio-based composite phase change materials with reduced graphene oxide-functionalized spent coffee grounds for efficient solar-to-thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2021, 219: 110790. |
91 | UMAIR M M, ZHANG Y, ZHANG S, et al. Transforming waste cigarette filters into 3D carbon scaffolds for form-stable and energy conversion phase change materials[J]. Sustainable Energy & Fuels, 2020, 4(8): 4285-4292. |
92 | LI Shaowei, LI Jing, GENG Yang, et al. Shape-stable phase change composites based on carbonized waste pomelo peel for low-grade thermal energy storage[J]. Journal of Energy Storage, 2022, 47: 103556. |
93 | TIAN Shu, YANG Ruiying, PAN Zihan, et al. Anisotropic reed-stem-derived hierarchical porous biochars supported paraffin wax for efficient solar-thermal energy conversion and storage[J]. Journal of Energy Storage, 2022, 56: 106153. |
94 | ALSHAER W G, RADY M A, NADA S A, et al. An experimental investigation of using carbon foam-PCM-MWCNTs composite materials for thermal management of electronic devices under pulsed power modes[J]. Heat and Mass Transfer, 2017, 53(2): 569-579. |
95 | AZIZI Y, SADRAMELI S M. Thermal management of a LiFePO4 battery pack at high temperature environment using a composite of phase change materials and aluminum wire mesh plates[J]. Energy Conversion and Management, 2016, 128: 294-302. |
96 | ZHAO Xinbo, LI Chuanchang, BAI Kaihao, et al. Multiple structure graphite stabilized stearic acid as composite phase change materials for thermal energy storage[J]. International Journal of Mining Science and Technology, 2022, 32(6): 1419-1428. |
97 | TAY N H S, LIU M, BELUSKO M, et al. Review on transportable phase change material in thermal energy storage systems[J]. Renewable and Sustainable Energy Reviews, 2017, 75: 264-277. |
98 | WU Qiang, YANG Lijun, WANG Xizhang, et al. From carbon-based nanotubes to nanocages for advanced energy conversion and storage[J]. Accounts of Chemical Research, 2017, 50(2): 435-444. |
99 | GAO Huan, BING Naici, XIE Huaqing, et al. Energy harvesting and storage blocks based on 3D oriented expanded graphite and stearic acid with high thermal conductivity for solar thermal application[J]. Energy, 2022, 254: 124198. |
100 | CAI Yuxuan, ZHANG Nan, CAO Xiaoling, et al. Ultra-light and flexible graphene aerogel-based form-stable phase change materials for energy conversion and energy storage[J]. Solar Energy Materials and Solar Cells, 2023, 252: 112176. |
101 | SONG Shaokun, AI Hong, ZHU Wanting, et al. Carbon aerogel based composite phase change material derived from kapok fiber: Exceptional microwave absorbility and efficient solar/magnetic to thermal energy storage performance[J]. Composites Part B: Engineering, 2021, 226: 109330. |
102 | LIU Lu, HU Jin, FAN Xiaoqiao, et al. Phase change materials with Fe3O4/GO three-dimensional network structure for acoustic-thermal energy conversion and management[J]. Chemical Engineering Journal, 2021, 426: 130789. |
103 | ZUO Xingwei, ZHANG Xueji, QU Lijun, et al. Smart fibers and textiles for personal thermal management in emerging wearable applications[J]. Advanced Materials Technologies, 2023, 8(6): 2201137. |
104 | LI Guangyong, HONG Guo, DONG Dapeng, et al. Multiresponsive graphene-aerogel-directed phase-change smart fibers[J]. Advanced Materials, 2018, 30(30): e1801754. |
105 | SUN Keyan, DONG Hongsheng, KOU Yan, et al. Flexible graphene aerogel-based phase change film for solar-thermal energy conversion and storage in personal thermal management applications[J]. Chemical Engineering Journal, 2021, 419: 129637. |
106 | LI Mei, WANG Yunming, ZHANG Yun, et al. Highly flexible and stretchable MWCNT/HEPCP nanocomposites with integrated near-IR, temperature and stress sensitivity for electronic skin[J]. Journal of Materials Chemistry C, 2018, 6(22): 5877-5887. |
107 | WANG Yunming, MI Hongyi, ZHENG Qifeng, et al. Flexible infrared responsive multi-walled carbon nanotube/form-stable phase change material nanocomposites[J]. ACS Applied Materials & Interfaces, 2015, 7(38): 21602-21609. |
[1] | ZHU Wei, QI Penggang, SU Yinhai, ZHANG Shuping, XIONG Yuanquan. Preparation and properties of bio-oil hierarchical porous carbon electrode materials for supercapacitor [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3077-3086. |
[2] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Effects of graphene oxide/carbon nanotubes on the properties of several typical polymer materials [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3012-3028. |
[3] | CAI Jiangtao, HOU Liuhua, LAN Yujin, ZHANG Chenchen, LIU Guoyang, ZHU Youyu, ZHANG Jianlan, ZHAO Shiyong, ZHANG Yating. Preparation of pitch-based porous carbon materials and application in supercapacitors [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1895-1906. |
[4] | LIU Dan, FAN Yunjie, WANG Huimin, YAN Zheng, LI Pengfei, LI Jiacheng, CAO Xuebo. High value-added functional porous carbon materials from waste PET and their applications [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 969-984. |
[5] | ZHUO Zuyou, SONG Shengnan, HUANG Mingjie, YANG Xuan, LU Beili, CHEN Yandan. Preparation of wheat flour-based hierarchical porous carbon with ultra large specific surface area by synergistic activation of potassium oxalate-urea and its electrochemical energy storage performance [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 925-933. |
[6] | ZHANG Jianzhong, XU Sheng, FAN Jiashu, FEI Zhenyu, WANG Kun, HUANG Jian, CUI Fengbo, RAN Wenhua. Progress in characterization and analysis of glass fiber sizing [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 821-838. |
[7] | CAO Mingmin, HAN Chengle, YANG Fang, CHEN Yuhuan. CO2 capture and separation by ionic liquid-metal organic framework composite materials [J]. Chemical Industry and Engineering Progress, 2023, 42(11): 5831-5841. |
[8] | XIAO Wei, XIAN Xiaobin, LIANG Guo, YANG Xinyu, ZHANG Yanhua. Fabrication of nitrogen-doped hierarchical porous carborn derived from porphyra and its supercapacitive properties [J]. Chemical Industry and Engineering Progress, 2023, 42(11): 5871-5881. |
[9] | HUANG Zhiguo, SUN Zhigao. Preparation and properties of nano phase change microcapsules for heat storage [J]. Chemical Industry and Engineering Progress, 2023, 42(11): 5842-5851. |
[10] | YE Hao, HU Ping, WANG Ce, LIU Yong. Advances in research on magnetic fibrous electromagnetic wave absorbers [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5310-5321. |
[11] | YANG Zhuangzhuang, LIU Yongjun, LIU Xingshe, LIU Zhe, YANG Lu, ZHANG Aining. Coalescence separation of oily sludge and removal effect of organic substances from coal chemical wastewater [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 538-545. |
[12] | LIU Peihui, LIU Yuzhe, LI Lin, WANG Shaohui, WANG Tonghua. Activation strategies of the porous carbon with high specific surface area and hierarchical pore structure and its VOCs adsorption performance [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 613-621. |
[13] | QIN Jian, LIU Tianxia, WANG Jian, LU Xing. Preparation and tribological properties of oleic acid modified graphene/molybdenum disulfide composite lubricating additives [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4973-4985. |
[14] | CAI Chuyue, FANG Xiaoming, LING Ziye, ZHANG Zhengguo. Research progress on thermal conductivity enhancement and form stability improvement of phase change thermal interface materials [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4907-4917. |
[15] | LI Wei, QI Dawei, YANG Jiongliang. Direct contact heat transfer process of vacuum exhaust system in wind tunnel [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4618-4624. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |