18 |
ZHANG Guodong, HAN Weiliang, DONG Fang, et al. One pot synthesis of a highly efficient mesoporous ceria-titanium catalyst for selective catalytic reduction of NO[J]. RSC Advances, 2016(2):76556-76567.
|
19 |
LIU Jie, LI Xinyong, ZHAO Qidong, et al. Mechanistic investigation of the enhanced NH3-SCR on cobalt-decorated Ce-Ti mixed oxide: In situ FTIR analysis for structure-activity correlation[J]. Applied Catalysis B: Environmental, 2017, 200: 297-308.
|
20 |
YANG Jie, REN Shan, ZHANG Tianshi, et al. Iron doped effects on active sites formation over activated carbon supported Mn-Ce oxide catalysts for low-temperature SCR of NO[J]. Chemical Engineering Journal, 2020, 379: 122398.
|
21 |
KIM G J, LEE S H, NAM K B, et al. A study on the structure of tungsten by the addition of ceria: Effect of monomeric structure over W/Ce/TiO2 catalyst on the SCR reaction[J]. Applied Surface Science, 2020, 507: 145064.
|
22 |
WANG Hui, QU Zhenping, XIE Hongbin, et al. Insight into the mesoporous Fe x Ce1- x O2- δ catalysts for selective catalytic reduction of NO with NH3: Regulable structure and activity[J]. Journal of Catalysis, 2016, 338: 56-67.
|
23 |
NIU Yanqing, SHANG Tong, HUI Shien, et al. Synergistic removal of NO and N2O in low-temperature SCR process with MnO x /Ti based catalyst doped with Ce and V[J]. Fuel, 2016, 185: 316-322.
|
24 |
XIAO Gaofei, GUO Ziyang, LI Jianhan, et al. Insights into the effect of flue gas on synergistic elimination of toluene and NO x over V2O5-MoO3(WO3)/TiO2 catalysts[J]. Chemical Engineering Journal, 2022, 435: 134914.
|
1 |
张艳. 焦炉烟气脱硫脱硝技术研究[J]. 中国高新科技, 2023(2): 92-94.
|
|
ZHANG Yan. Research on desulfurization and denitrification technology of coke oven flue gas[J]. Zhong Guo Gao Xin Ke Ji, 2023(2): 92-94.
|
2 |
殷成阳, 侯铭, 杨爽, 等. 过渡金属改性Cu-SSZ-13分子筛脱硝催化剂研究进展[J]. 化工进展, 2023, 42(6): 2963-2974.
|
|
YIN Chengyang, HOU Ming, YANG Shuang, et al. Research progress in transition metals modified Cu-SSZ-13 zeolite denitration catalysts[J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2963-2974.
|
3 |
Fabien CAN, COURTOIS Xavier, DUPREZ Daniel. Tungsten-based catalysts for environmental applications[J]. Catalysts, 2021, 11(6): 703.
|
4 |
LU Shengyong, WANG Qiulin, STEVENS William R, et al. Study on the decomposition of trace benzene over V2O5-WO3/TiO2-based catalysts in simulated flue gas[J]. Applied Catalysis B: Environmental, 2014, 147: 322-329.
|
5 |
张巍, 汤云灏, 尹艳山, 等. 改性镧系钙钛矿催化剂强化挥发性有机物催化氧化的研究进展[J]. 化工进展, 2021, 40(3): 1425-1437
|
|
ZHANG Wei, TANG Yunhao, YIN Yanshan, et al. Research progress in enhanced catalytic oxidation of VOCs by modified La-based perovskite catalyst[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1425-1437
|
6 |
DEBECKER D P, DELAIGLE R, BOUCHMELLA K, et al. Total oxidation of benzene and chlorobenzene with MoO3- and WO3-promoted V2O5/TiO2 catalysts prepared by a nonhydrolytic sol-gel route[J]. Catalysis Today, 2010, 157(1/2/3/4): 125-130.
|
7 |
CHEN Yin, CHEN Zhuofan, ZHANG Chaoyue, et al. Multiple pollutants control of NO, benzene and toluene from coal-fired plant by Mo/Ni impregnated TiO2-based NH3-SCR catalyst: A DFT supported experimental study[J]. Applied Surface Science, 2022, 599: 153986.
|
8 |
XIAO Gaofei, GUO Ziyang, LIN Beilong, et al. Cu-VWT catalysts for synergistic elimination of NO x and volatile organic compounds from coal-fired flue gas[J]. Environmental Science & Technology, 2022, 56(14): 10095-10104.
|
9 |
CHEN Zhuofan, LIAO Yanfen, CHEN Yin, et al. In situ DRIFTS FT-IR and DFT study on Fe-V-W/Ti removal of NO x and VOCs[J]. Environmental Science and Pollution Research, 2022, 29(54): 81571-81582.
|
10 |
CHEN Lin, LIAO Yanfen, CHEN Yin, et al. Performance of Ce-modified V-W-Ti type catalyst on simultaneous control of NO and typical VOCS [J]. Fuel Processing Technology, 2020, 207: 106483.
|
11 |
CHEN Lin, LIAO Yanfen, XIN Shirong, et al. Simultaneous removal of NO and volatile organic compounds (VOCs) by Ce/Mo doping-modified selective catalytic reduction (SCR) catalysts in denitrification zone of coal-fired flue gas[J]. Fuel, 2020, 262: 116485.
|
12 |
KWON D W, SEO P W, KIM G J, et al. Characteristics of the HCHO oxidation reaction over Pt/TiO2 catalysts at room temperature: The effect of relative humidity on catalytic activity[J]. Applied Catalysis B: Environmental, 2015, 163: 436-443.
|
13 |
BAI Xueting, GUO Yongle, ZHAO Zhongkui. Silicotungstic acid-derived WO3 composited with ZrO2 supported on SBA-15 as a highly efficient mesoporous solid acid catalyst for the alkenylation of p-xylene with phenylacetylene[J]. Chinese Chemical Letters, 2022, 33(3): 1325-1330.
|
14 |
WANG Penglu, GAO Shan, WANG Haiqiang, et al. Enhanced dual resistance to alkali metal and phosphate poisoning: Mo modifying vanadium-titanate nanotubes SCR catalyst[J]. Applied Catalysis A: General, 2018, 561: 68-77.
|
15 |
LI Sujing, WANG Xiaoxiang, TAN Shan, et al. CrO3 supported on sargassum-based activated carbon as low temperature catalysts for the selective catalytic reduction of NO with NH3 [J]. Fuel, 2017, 191: 511-517.
|
16 |
ZHANG Xunan, LI Caiting, ZHAO Lingkui, et al. Simultaneous removal of elemental mercury and NO from flue gas by V2O5-CeO2/TiO2 catalysts[J]. Applied Surface Science, 2015, 347: 392-400.
|
17 |
LI Wei, ZHANG Cheng, LI Xin, et al. Ho-modified Mn-Ce/TiO2 for low-temperature SCR of NO x with NH3: Evaluation and characterization[J]. Chinese Journal of Catalysis, 2018, 39(10): 1653-1663.
|