Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (S1): 447-460.DOI: 10.16085/j.issn.1000-6613.2023-0614
• Resources and environmental engineering • Previous Articles Next Articles
ZHANG Jie1(), WANG Fangfang2, XIA Zhonglin1, ZHAO Guangjin2, MA Shuangchen1()
Received:
2023-04-16
Revised:
2023-09-18
Online:
2023-11-30
Published:
2023-10-25
Contact:
MA Shuangchen
张杰1(), 王放放2, 夏忠林1, 赵光金2, 马双忱1()
通讯作者:
马双忱
作者简介:
张杰(1994—),男,硕士研究生,研究方向为六氟化硫废气降解技术。E-mail:j17ncepu@163.com。
CLC Number:
ZHANG Jie, WANG Fangfang, XIA Zhonglin, ZHAO Guangjin, MA Shuangchen. Current SF6 emission, emission reduction and future prospects under “carbon peaking and carbon neutrality”[J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 447-460.
张杰, 王放放, 夏忠林, 赵光金, 马双忱. “双碳”目标下SF6排放现状、减排手段分析及未来展望[J]. 化工进展, 2023, 42(S1): 447-460.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0614
气体 | 理化特性 | 环境特性 | 相对绝缘性能 | |||||
---|---|---|---|---|---|---|---|---|
毒理性 | 液化温度/℃ | 易燃性 | 大气寿命 | GWP | ODP | 主要毒性分解产物(微水) | ||
SF6 | 无 | -64 | 无 | 3200a | 25200 | 0 | HF、SOF2等 | 1 |
N2 | 无 | -196 | 无 | — | 0 | 0 | 无 | 0.38 |
CO2 | 无 | -78.5 | 无 | 5-200a | 1 | 0 | 无 | 0.35 |
c-C4F8 | 低 | -8 | 无 | 3200a | 8700 | 0 | HF等 | 1.27 |
CF3I | 低 | -22.5 | 无 | 0.005a | 1~5 | 0 | HF等 | 1.2 |
C5F10O | 无 | 26.5 | 无 | 0.042a | 1 | 0 | COF2等 | 2 |
C4F7N | 低 | -4.7 | 无 | 30a | 2100 | 0 | 氰化物、HF等 | 2.1 |
气体 | 理化特性 | 环境特性 | 相对绝缘性能 | |||||
---|---|---|---|---|---|---|---|---|
毒理性 | 液化温度/℃ | 易燃性 | 大气寿命 | GWP | ODP | 主要毒性分解产物(微水) | ||
SF6 | 无 | -64 | 无 | 3200a | 25200 | 0 | HF、SOF2等 | 1 |
N2 | 无 | -196 | 无 | — | 0 | 0 | 无 | 0.38 |
CO2 | 无 | -78.5 | 无 | 5-200a | 1 | 0 | 无 | 0.35 |
c-C4F8 | 低 | -8 | 无 | 3200a | 8700 | 0 | HF等 | 1.27 |
CF3I | 低 | -22.5 | 无 | 0.005a | 1~5 | 0 | HF等 | 1.2 |
C5F10O | 无 | 26.5 | 无 | 0.042a | 1 | 0 | COF2等 | 2 |
C4F7N | 低 | -4.7 | 无 | 30a | 2100 | 0 | 氰化物、HF等 | 2.1 |
方法 | 优点 | 缺点 |
---|---|---|
深冷提纯(液化法) | 方法简单 | 效率低,对分解产物分离效果差 |
膜分离法 | 常温进行、无相态变化、无化学变化、选择性好、适应性强,能耗低 | 膜易堵塞,维护费用高,操作复杂 |
吸附提纯法 | 吸附剂种类多,可进行选择性吸附 | 吸附饱和无明显现象,更换频率不易确定;仅适用于低浓度SF6 |
精馏提纯法 | 利用相对挥发度的不同,可较容易将SF6与其他组分分离 | 操作条件要求高 |
方法 | 优点 | 缺点 |
---|---|---|
深冷提纯(液化法) | 方法简单 | 效率低,对分解产物分离效果差 |
膜分离法 | 常温进行、无相态变化、无化学变化、选择性好、适应性强,能耗低 | 膜易堵塞,维护费用高,操作复杂 |
吸附提纯法 | 吸附剂种类多,可进行选择性吸附 | 吸附饱和无明显现象,更换频率不易确定;仅适用于低浓度SF6 |
精馏提纯法 | 利用相对挥发度的不同,可较容易将SF6与其他组分分离 | 操作条件要求高 |
30 | 梁真镇, 付梦月, 高英武, 等. 六氟化硫中可水解氟化物的吸附试验及分析[J]. 化学推进剂与高分子材料, 2011, 9(4): 89-90, 93. |
LIANG Zhenzhen, FU Mengyue, GAO Yingwu, et al. Adsorption test and analysis of hydrolysable fluorides in sulfur hexafluoride[J]. Chemical Propellants & Polymeric Materials, 2011, 9(4): 89-90, 93. | |
31 | 刘英卫, 钟世强, 祁炯, 等. 六氟化硫气体回收处理技术及设备[J]. 电力设备, 2008(8): 14-17. |
LIU Yingwei, ZHONG Shiqiang, QI Jiong, et al. Technology and equipment of recovery and treatment for SF6 gas[J]. Electrical Equipment, 2008(8): 14-17. | |
32 | 孙强, 杨典, 王芳, 等. 基于ASPEN PLUS的六氟化硫提纯工艺研究[J]. 云南化工, 2020, 47(9): 41-45. |
SUN Qiang, YANG Dian, WANG Fang, et al. Research on distillation of pure sulfur hexafluoride based on ASPEN PLUS[J]. Yunnan Chemical Technology, 2020, 47(9): 41-45. | |
33 | 唐念, 乔胜亚, 李丽, 等. HF和H2S作为气体绝缘组合电器绝缘缺陷诊断特征气体的有效性[J]. 电工技术学报, 2017, 32(19): 202-211. |
TANG Nian, QIAO Shengya, LI Li, et al. Validity of HF and H2S as target gases of insulation monitoring in gas insulated switchgear[J]. Transactions of China Electrotechnical Society, 2017, 32(19): 202-211. | |
34 | 赵锋, 李胜利, 李晋城, 等. 高低温冷阱富集分离SF6典型分解产物实验研究[J]. 高电压技术, 2015, 41(11): 3866-3871. |
ZHAO Feng, LI Shengli, LI Jincheng, et al. Experimental study on the separation and enrichment for typical decomposition products of SF6 with high and low temperature trap[J]. High Voltage Engineering, 2015, 41(11): 3866-3871. | |
35 | LIU C H, PALANISAMY S, CHEN S, et al. Mechanism of formation of SF6 decomposition gas products and its identification by GC-MS and electrochemical methods: A mini review[J]. International Journal of Electrochemical Science, 2015, 10(5): 4223-4231. |
36 | 宋玉梅, 刘伟, 朱峰, 等. 吸附剂对六氟化硫气体中八氟丙烷的吸附特性研究[J]. 电工材料, 2021(5): 12-15. |
SONG Yumei, LIU Wei, ZHU Feng, et al. Study on adsorption characteristics of adsorbent for cctafluoropropane in sulfur hexafluoride gas[J]. Electrical Engineering Materials, 2021(5): 12-15. | |
37 | 彭立培, 王少波. 六氟化硫制备与纯化技术[J]. 舰船科学技术, 2006, 28(2): 30-33. |
PENG Lipei, WANG Shaobo. Reviews on preparation and purification methods of sulfur hexafluoride[J]. Ship Science and Technology, 2006, 28(2): 30-33. | |
38 | 陈敏. 基于精馏提纯的六氟化硫气体净化处理技术研究[J]. 广州化工, 2017, 45(18): 8-9, 31. |
CHEN Min. Study on purification technique of SF6 based on distillation[J]. Guangzhou Chemical Industry, 2017, 45(18): 8-9, 31. | |
39 | 刘易雄, 王同详. SF6气体净化处理系统及应用[J]. 高压电器, 2014, 50(2): 109-114. |
LIU Yixiong, WANG Tongxiang. SF6 gas purifying system[J]. High Voltage Apparatus, 2014, 50(2): 109-114. | |
40 | 陈梅. 电气设备六氟化硫气体回收处理技术之试验研究[J]. 科技与企业, 2012(24): 354. |
CHEN Mei. Experimental study on recovery and treatment technology of sulfur hexafluoride gas in electrical equipment[J]. Keji Yu Qiye, 2012(24): 354. | |
41 | 郭秋宁. 活性氧化铝的性质、制备及应用[J]. 广西化工, 1996, 25(4): 31-34. |
GUO Qiuning. Properties, preparation and application of activated alumina[J]. Guangxi Chemical Industry, 1996, 25(4): 31-34. | |
42 | 杨国华, 黄统琳, 姚忠亮, 等. 吸附剂的应用研究现状和进展[J]. 化学工程与装备, 2009(6): 84-88, 83. |
YANG Guohua, HUANG Tonglin, YAO Zhongliang, et al. Current application research on the adsorbents and their development tendency[J]. Chemical Engineering & Equipment, 2009(6): 84-88, 83. | |
43 | 唐炬, 曾福平, 梁鑫, 等. 吸附剂对局部放电下SF6分解特征组分的吸附研究[J]. 中国电机工程学报, 2014, 34(3): 486-494. |
TANG Ju, ZENG Fuping, LIANG Xin, et al. Study on the influence of adsorbent on SF6 decomposition characteristics under partial discharge[J]. Proceedings of the CSEE, 2014, 34(3): 486-494. | |
44 | 钟理鹏, 汲胜昌, 李金宇, 等. 吸附剂对SF6典型分解产物含量及变化规律的影响[J]. 西安交通大学学报, 2015, 49(2): 86-92, 134. |
ZHONG Lipeng, JI Shengchang, LI Jinyu, et al. Effects of adsorbent on contents and evolving law of typical SF6 decomposition products[J]. Journal of Xi’an Jiaotong University, 2015, 49(2): 86-92, 134. | |
1 | 张咪, 高克利, 侯华, 等. SF6替代绝缘气体的虚拟筛选与分子设计综述[J]. 高电压技术, 2023, 49(7): 2816-2830. |
ZHANG Mi, GAO Keli, HOU Hua, et al. Review on Computational Screening and Molecular Design of Replacement Gases for SF6 [J]. High Voltage Engineering, 2023, 49(7): 2816-2830. | |
2 | 崔兆仑, 郝艳捧, 阳林, 等. SF6废气无害化降解研究综述[J]. 中国电机工程学报, 2023, 43(19): 7720-7736. |
CUI Zhaolun, HAO Yanpeng, YANG Lin, et al. Review on harmless abatement of SF6 waste gas[J]. Proceedings of the CSEE, 2023, 43(19): 7720-7736. | |
3 | 黄小龙, 赵双伟, 王勇, 等. 环保型高压电力开关设备研究进展综述[J]. 工程科学与技术, 2023, 55(3): 14-29. |
HUANG Xiaolong, ZHAO Shuangwei, WANG Yong, et al. A review of research progress on environment-friendly high-voltage power switchgear[J]. Advanced Engineering Sciences, 2023, 55(3): 14-29. | |
4 | 彭静, 王军, 亓富军, 等. “双碳”目标下配电网多阶段扩展规划[J]. 电力系统保护与控制, 2022, 50(7): 153-161. |
PENG Jing, WANG Jun, QI Fujun, et al. Multi-stage expansion planning of a distribution network with double-carbon policy[J]. Power System Protection and Control, 2022, 50(7): 153-161. | |
5 | SIMMONDS P G, RIGBY M, MANNING A J, et al. The increasing atmospheric burden of the greenhouse gas sulfur hexafluoride (SF6)[J]. Atmospheric Chemistry and Physics, 2020, 20(12): 7271-7290 |
6 | ZHOU Sheng, TENG Fei, TONG Qing. Mitigating sulfur hexafluoride (SF6) emission from electrical equipment in China[J]. Sustainability, Multidisciplinary Digital Publishing Institute, 2018, 10(7): 2402. |
7 | 中国气象局. 2020年中国温室气体公报[EB/OL].[2023-09-30]. . |
8 | RABIE Mohamed, FRANCK Christian. Assessment of eco-friendly gases for electrical insulation to replace the most potent industrial greenhouse gas SF6 [J]. Environmental Science & Technology Letters, American Chemical Society, 2018, 52(2): 369-380. |
45 | 陈敏. 六氟化硫气体吸附提纯技术与吸附剂选择研究[J]. 广州化工, 2016, 44(18): 127-129. |
CHEN Min. Study on purification technique and adsorbent choice of SF6 [J]. Guangzhou Chemical Industry, 2016, 44(18): 127-129. | |
46 | 刘朋亮, 张建飞, 李琳凤, 等. 膜技术在六氟化硫混合绝缘气体回收及提纯中的应用[J]. 电气技术, 2021, 22(3): 89-93. |
LIU Pengliang, ZHANG Jianfei, LI Linfeng, et al. Application of membrane technology in recovery and purification of sulfur hexafluoride mixed insulating gas[J]. Electrical Engineering, 2021, 22(3): 89-93. | |
47 | BUILES S, ROUSSEL T, VEGA L F. Optimization of the separation of sulfur hexafluoride and nitrogen by selective adsorption using Monte Carlo simulations[J]. AIChE Journal, 2011, 57(4): 962-974. |
48 | SUN M S, SHAH D B, XU H H, et al. Adsorption equilibria of C1 to C4 alkanes, CO2, and SF6 on silicalite[J]. The Journal of Physical Chemistry B, 1998, 102(8): 1466-1473. |
49 | PRIBYLOV A A, KALINNIKOVA I A, REGENT N I. Features of sulfur hexafluoride adsorption on carbon adsorbents[J]. Russian Chemical Bulletin, 2003, 52(4): 882-888. |
50 | 郑先强. SF6气体在多孔材料中的吸附和分离的分子模拟研究[D]. 北京: 北京化工大学, 2021. |
ZHENG Xianqiang. Molecular simulation of adsorption and separation of SF6 gas in porous materials[D]. Beijing: Beijing University of Chemical Technology, 2021. | |
51 | HUANG Li, GU Dinghong, YANG Longyu, et al. Photoreductive degradation of sulfur hexafluoride in the presence of styrene[J]. Journal of Environmental Sciences, 2008, 20(2): 183-188. |
52 | 黄丽, 顾丁红, 沈燕, 等. 光还原法降解强温室气体SF6的研究[C]//上海市化学化工学会2007年度学术年会论文摘要集, 中国, 上海, 2007: 212-213, 216, 269. |
HUANG Li, GU Dinghong, SHEN Yan, et al. Photoreduction of SF6 as a strong greenhouse gas[C]//Abstracts of the 2007 Annual Meeting of the Shanghai Chemical and Chemical Society, Shanghai, China, 2007: 212-213, 216, 269. | |
9 | Department of Commerce N US. Global monitoring laboratory-carbon cycle greenhouse gases[EB/OL]. . |
10 | KIKSTRA J S, VINCA A, LOVAT F, et al. Climate mitigation scenarios with persistent COVID-19-related energy demand changes[J]. Nature Energy, 2021, 6(12): 1114-1123. |
11 | US EPA O. Draft Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2021[EB/OL].. |
12 | 周文俊, 郑宇, 杨帅, 等. 替代SF6的环保型绝缘气体研究进展与趋势[J]. 高压电器, 2016, 52(12): 8-14. |
ZHOU Wenjun, ZHENG Yu, YANG Shuai, et al. Research progress and trend of SF6 alternative with environment friendly insulation gas[J]. High Voltage Apparatus, 2016, 52(12): 8-14. | |
13 | 李学妨, 史俊, 刘晓波, 等. 环保型绝缘气体技术经济性能综合评估研究[J]. 高压电器, 2023, 59(2): 52-60, 68. |
LI Xuefang, SHI Jun, LIU Xiaobo, et al. Research on Comprehensive Assessment of Technical and Economic Performance of Environmentally Friendly Insulating Gas.[J]. High Voltage Apparatus, 2023, 59(2): 52-60, 68. | |
14 | 贾申利, 贾荣照, 朱璐. 真空开断型环保GIS发展现状及趋势[J]. 高压电器, 2022, 58(9): 1-12. |
JIA Shenli, JIA Rongzhao, ZHU Lu. Advances in the development of vacuum-based eco-friendly GIS[J]. High Voltage Apparatus, 2022, 58(9): 1-12. | |
15 | 李国兴, 姜子秋, 关艳玲, 等. 六氟化硫气体低温液化特性试验研究[J]. 黑龙江电力, 2015, 37(5): 399-403. |
LI Guoxing, JIANG Ziqiu, GUAN Yanling, et al. Research on characteristic test of SF6 gas low-temperature liquefaction[J]. Heilongjiang Electric Power, 2015, 37(5): 399-403. | |
16 | 侯志强, 郭若琛, 李军浩. 直流电压下SF6/N2混合气体沿面局部放电特性[J]. 电工技术学报, 2020, 35(14): 3087-3096. |
HOU Zhiqiang, GUO Ruochen, LI Junhao. Partial discharge characteristics of the surface discharge in SF6/N2 of the mixed gas under DC voltage[J]. Transactions of China Electrotechnical Society, 2020, 35(14): 3087-3096. | |
53 | YAMADA Yasuhiro, TAMURA Hiroyuki, TAKEDA Daisuke. Photochemical reaction of sulfur hexafluoride with water in low-temperature xenon matrices[J]. The Journal of Chemical Physics, 2011, 134(10): 104302. |
54 | 沈燕. 强温室气体SF6、SF5CF3与CF4的等离子体降解与光降解过程的研究[D]. 上海: 复旦大学, 2008. |
SHEN Yan. Study on plasma degradation and photodegradation of strong greenhouse gases SF6, SF5CF3 and CF4 [D]. Shanghai: Fudan University, 2008. | |
55 | SONG Xiaoxiao, LIU Xingang, YE Zhaolian, et al. Photodegradation of SF6 on polyisoprene surface: Implication on elimination of toxic byproducts[J]. Journal of Hazardous Materials, 2009, 168(1): 493-500. |
56 | 张晓星, 李亚龙, 胡雄雄, 等. 基于TiO2表面紫外光催化降解高浓度SF6的实验与仿真研究[J]. 高电压技术, 2019, 45(7): 2212-2218. |
ZHANG Xiaoxing, LI Yalong, HU Xiongxiong, et al. Simulation and experimental study on degradation of high concentration SF6 based on ultraviolet photocatalysis principle of titanium dioxide surface[J]. High Voltage Engineering, 2019, 45(7): 2212-2218. | |
57 | WANG Y, SHIH M, TSAI C H, et al. Total toxicity equivalents emissions of SF6, CHF3, and CCl2F2 decomposed in a RF plasma environment[J]. Chemosphere, 2006, 62(10): 1681-1688. |
58 | RADOIU Marilena, HUSSAIN Shahid. Microwave plasma removal of sulphur hexafluoride[J]. Journal of Hazardous Materials, 2009, 164(1): 39-45. |
59 | ROSOCHA L A, KIM Y, ANDERSON G K, et al. Decomposition of ethane in atmospheric-pressure dielectric-barrier discharges: Experiments[J]. IEEE Transactions on Plasma Science, 2006, 34(6): 2526-2531. |
60 | 李和平, 于达仁, 孙文廷, 等. 大气压放电等离子体研究进展综述[J]. 高电压技术, 2016, 42(12): 3697-3727. |
LI Heping, YU Daren, SUN Wenting, et al. State-of-the-art of atmospheric discharge plasmas[J]. High Voltage Engineering, 2016, 42(12): 3697-3727. | |
61 | 沈燕, 黄丽, 张仁熙, 等. 介质阻挡放电降解SF6的研究[J]. 环境化学, 2007, 26(3): 275-279. |
SHEN Yan, HUANG Li, ZHANG Renxi, et al. Decomposition of SF6 by dielectric barriers discharge[J]. Environmental Chemistry, 2007, 26(3): 275-279. | |
62 | KIM S W, KIM J B, KIM J H, et al. A study on particulate matter formed from plasma decomposition of SF6 [J]. Journal of Korean Society for Atmospheric Environment, 2017, 33(4): 326-332. |
63 | GUI Yingang, CHEN Wenlong, LU Yuncai, et al. Au catalyst-modified MoS2 monolayer as a highly effective adsorbent for SO2F2 gas: A DFT study[J]. ACS Omega, 2019, 4(7): 12204-12211. |
64 | LEE H M, CHANG M B, WU K Y. Abatement of sulfur hexafluoride emissions from the semiconductor manufacturing process by atmospheric-pressure plasmas[J]. Journal of the Air & Waste Management Association, 2004, 54(8): 960-970. |
65 | ZHUANG Quan, CLEMENTS Bruce, MCFARLAN Andrew, et al. Decomposition of the most potent greenhouse gas (GHG) sulphur hexafluoride (SF6) using a dielectric barrier discharge (DBD) plasma[J]. The Canadian Journal of Chemical Engineering, 2014, 92(1): 32-35. |
66 | ZHANG J, ZHOU J Z, XU Z P, et al. Decomposition of potent greenhouse gas sulfur hexafluoride (SF6) by kirschsteinite-dominant stainless steel slag[J]. Environmental Science & Technology, 2014, 48(1): 599-606. |
67 | 李亚龙, 张晓星, 崔兆仑, 等. NH3对DBD降解SF6影响的试验研究[J]. 电工技术学报, 2019, 34(24): 5262-5269. |
LI Yalong, ZHANG Xiaoxing, CUI Zhaolun, et al. Experiment of effect of ammonia on degradation of sulfur hexafluoride by dielectric barrier discharge[J]. Transactions of China Electrotechnical Society, 2019, 34(24): 5262-5269. | |
68 | 董晓虎, 程绳, 姚京松, 等. H2O浓度对填充床式反应器降解SF6影响的实验研究[J]. 高压电器, 2021, 57(3): 172-179. |
DONG Xiaohu, CHENG Sheng, YAO Jingsong, et al. Experimental study on H2O concentration on degradation effect of SF6 by packed-bed reactor[J]. High Voltage Apparatus, 2021, 57(3): 172-179. | |
69 | ZHANG Xiaoxing, ZHANG Guozhi, WU Yongqian, et al. Synergistic treatment of SF6 by dielectric barrier discharge/γ-Al2O3 catalysis[J]. AIP Advances, 2018, 8(12): 125109. |
70 | ZHANG Xiaoxing, WANG Yufei, CUI Zhaolun, et al. Experimental study on the degradation of SF6 by dielectric barrier discharge with different packing materials[J]. Transactions of China Electrotechnical Society, 2021, 36(2): 397-406. |
71 | 张晓星, 周畅, 崔兆仑, 等. 填充颗粒尺寸对介质阻挡放电降解SF6的影响[J]. 电工技术学报, 2022, 37(18): 4766-4776. |
ZHANG Xiaoxing, ZHOU Chang, CUI Zhaolun, et al. Effect of particle size on degradation of SF6 by dielectric barrier discharge[J]. Transactions of China Electrotechnical Society, 2022, 37(18): 4766-4776. | |
17 | 张潮海, 韩冬, 李康, 等. SF6替代气体技术及其在GIL中的应用与发展[J]. 高电压技术, 2017, 43(3): 689-698. |
ZHANG Chaohai, HAN Dong, LI Kang, et al. SF6 alternative techniques and their applications and prospective developments in gas insulated transmission lines[J]. High Voltage Engineering, 2017, 43(3): 689-698. | |
18 | 牛文豪, 张国强, 林涛, 等. 氟碳介质热致气液两相流的工频击穿特性及其在GIL中的应用展望[J]. 高电压技术, 2017, 43(3): 743-753. |
NIU Wenhao, ZHANG Guoqiang, LIN Tao, et al. AC breakdown initiated by thermally induced bubble of nonflammable fluorocarbon and its application prospect in GIL[J]. High Voltage Engineering, 2017, 43(3): 743-753. | |
19 | 彭敏, 王宝山, 于萍, 等. 六氟化硫替代气体三氟化硫氮的制备及表征[J]. 应用化工, 2018, 47(11): 2301-2303, 2313. |
PENG Min, WANG Baoshan, YU Ping, et al. Preparation and characterization of NSF3 for the alternative gas of SF6 [J]. Applied Chemical Industry, 2018, 47(11): 2301-2303, 2313. | |
20 | 李卫国, 侯孟希, 袁创业, 等. 稍不均匀场下CF4/N2混合物雷电冲击绝缘特性研究[J]. 高压电器, 2016, 52(12): 128-133. |
LI Weiguo, HOU Mengxi, YUAN Chuangye, et al. Breakdown characteristics of CF4/N2 in slightly non-uniform electric field under lightning impulse stress[J]. High Voltage Apparatus, 2016, 52(12): 128-133. | |
21 | BEROUAL A, HADDAD A M. Recent advances in the quest for a new insulation gas with a low impact on the environment to replace sulfur hexafluoride (SF6) gas in high-voltage power network applications[J]. Energies, 2017, 10(8): 1216. |
22 | KIEFFEL Yannick, IRWIN Todd, PONCHON Philippe, et al. Green gas to replace SF6 in electrical grids[J]. IEEE Power and Energy Magazine, 2016, 14(2): 32-39. |
23 | 侯华, 王宝山. 六氟化硫替代气体绝缘强度的官能团加和理论方法[J]. 高等学校化学学报, 2021, 42(12): 3709-3715. |
HOU Hua, WANG Baoshan. Group additivity theoretical model for the prediction of dielectric strengths of the alternative gases to SF6 [J]. Chemical Journal of Chinese Universities, 2021, 42(12): 3709-3715. | |
24 | 王宝山, 余小娟, 侯华, 等. 六氟化硫绝缘替代气体的构效关系与分子设计技术现状及发展[J]. 电工技术学报, 2020, 35(1): 21-33. |
72 | DERVOS C T, VASSILIOU P. Sulfur hexafluoride (SF6): Global environmental effects and toxic byproduct formation[J]. Journal of the Air & Waste Management Association, 2000, 50(1): 137-141. |
73 | 宋潇潇. 全氟温室气体SF6、 NF3的降解途径探索[D]. 上海: 复旦大学, 2009. |
SONG Xiaoxiao. Study on the degradation pathway of perfluorinated greenhouse gases SF6 and NF3 [D]. Shanghai: Fudan University, 2009. | |
74 | KASHIWAGI Daishin, TAKAI Asami, TAKUBO Takeshi, et al. Metal phosphate catalysts effective for degradation of sulfur hexafluoride[J]. Industrial & Engineering Chemistry Research, 2009, 48(2): 632-640. |
75 | KASHIWAGI Daishin, TAKAI Asami, TAKUBO Takeshi, et al. Catalytic activity of rare earth phosphates for SF6 decomposition and promotion effects of rare earths added into AlPO4 [J]. Journal of Colloid and Interface Science, 2009, 332(1): 136-144. |
76 | 张晓星, 王毅, 田双双, 等. O2对CePO4热催化降解SF6废气的影响[J]. 高电压技术, 2022, 48(6): 2152-2158. |
ZHANG Xiaoxing, WANG Yi, TIAN Shuangshuang, et al. Effect of O2 on thermocatalytic degradation of SF6 by CePO4 [J]. High Voltage Engineering, 2022, 48(6): 2152-2158. | |
77 | 熊浩, 陈铁, 刘航, 等. 基于磷酸盐的热催化降解SF6废气研究[J]. 高压电器, 2021, 57(3): 180-185. |
XIONG Hao, CHEN Tie, LIU Hang, et al. Study on thermal catalytic degradation of SF6 waste gas based on phosphate[J]. High Voltage Apparatus, 2021, 57(3): 180-185. | |
78 | PARK N K, PARK H G, LEE T J, et al. Hydrolysis and oxidation on supported phosphate catalyst for decomposition of SF6 [J]. Catalysis Today, 2012, 185(1): 247-252. |
79 | 厉亚军. 不锈钢渣降解强温室气体六氟化硫(SF6)的研究[D]. 上海: 上海大学, 2012. |
LI Yajun. The degradation of potent greenhouse gas sulfur hexafluoride (SF6) by stainless steel slag[D]. Shanghai: Shanghai University, 2012. | |
24 | WANG Baoshan, YU Xiaojuan, HOU Hua, et al. Review on the developments of structure-activity relationship and molecular design of the replacement dielectric gases for SF6 [J]. Transactions of China Electrotechnical Society, 2020, 35(1): 21-33. |
25 | 颜湘莲, 高克利, 郑宇, 等. SF6混合气体及替代气体研究进展[J]. 电网技术, 2018, 42(6): 1837-1844. |
YAN Xianglian, GAO Keli, ZHENG Yu, et al. Progress of gas mixture and alternative gas of SF6 [J]. Power System Technology, 2018, 42(6): 1837-1844. | |
26 | 张晓星, 田双双, 肖淞, 等. SF6替代气体研究现状综述[J]. 电工技术学报, 2018, 33(12): 2883-2893. |
ZHANG Xiaoxing, TIAN Shuangshuang, XIAO Song, et al. A review study of SF6 substitute gases[J]. Transactions of China Electrotechnical Society, 2018, 33(12): 2883-2893. | |
27 | LEE Hakju, YEUN Jeuk, Heesub AHN, et al. Insulation design of 25.8kV class gas insulated switchgear in dry air[C]//2022 6th International Conference on Electric Power Equipment-Switching Technology (ICEPE-ST). March 15-18, 2022, Seoul, Korea, Republic of IEEE, 2022: 253-256. |
28 | 侯孟希, 于昊洋, 金钊, 等. CF4及其N2混合物微观放电参数计算与绝缘特性仿真研究[J]. 高压电器, 2020, 56(1): 121-127. |
HOU Mengxi, YU Haoyang, JIN Zhao, et al. Calculation of discharge micro-parameters and simulation of insulation characteristics for CF4 and its N2 mixture[J]. High Voltage Apparatus, 2020, 56(1): 121-127. | |
29 | 黄青松. 六氟化硫气体回收净化处理装置技术的发展前景[J]. 科技创新与应用, 2015(24): 51-52. |
HUANG Qingsong. Development prospect of sulfur hexafluoride gas recovery purification treatment device technology[J]. Technology Innovation and Application, 2015(24): 51-52. | |
80 | 相震. 减排六氟化硫应对全球气候变化[J]. 中国环境管理, 2010, 2(2): 23-27. |
XIANG Zhen. SF6 emission reduction to deal with the global climate change[J]. Chinese Journal of Environmental Management, 2010, 2(2): 23-27. | |
81 | 卞梦凡, 高钰婷, 郝影, 等. 国家温室气体清单编制原则与当前实务[J]. 中国统计, 2021(12): 42-44. |
BIAN Mengfan, GAO Yuting, HAO Ying, et al. Principles and current practice of compiling national greenhouse gas inventory[J]. China Statistics, 2021(12): 42-44. | |
82 | 李志刚, 蔡巍, 李帆. 六氟化硫气体的全寿命周期管理[J]. 华北电力技术, 2016(5): 29-34. |
LI Zhigang, CAI Wei, LI Fan. The full life cycle management of sulfur hexafluoride gas[J]. North China Electric Power, 2016(5): 29-34. | |
83 | 肖淞, 石生尧, 林婧桐, 等. “碳达峰、碳中和”目标下高压电气设备中强温室绝缘气体SF6控制策略分析[J]. 中国电机工程学报, 2023, 43(1): 339-358. |
XIAO Song, SHI Shengyao, LIN Jingtong, et al. Analysis on the control strategy of the strong greenhouse insulating gas SF6 in high-voltage electrical equipment under the goal of “emission peak and carbon neutrality”[J]. Proceedings of the CSEE, 2023, 43(1): 339-358. |
[1] | YANG Zhiqiang, ZENG Jijun, MA Yiding, YU Tao, ZHAO Bo, LIU Yingzhe, ZHANG Wei, LYU Jian, LI Xingwen, ZHANG Boya, TANG Nian, LI Li, SUN Dongwei. Research status and future trend of sulfur hexafluoride alternatives [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4093-4107. |
[2] | LI Jia, FAN Xing, CHEN Li, LI Jian. Research progress of simultaneous removal of NO x and N2O from the tail gas of nitric acid production [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3770-3779. |
[3] | LI Wenxiu, YANG Yuhang, HUANG Yan, WANG Tao, WANG Lei, FANG Mengxiang. Preparation of ultrafine calcium carbonate by CO2 mineralization using high calcium-based solid waste [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2047-2057. |
[4] | CHEN Chongming, ZENG Siming, LUO Xiaona, SONG Guosheng, HAN Zhongge, YU Jinxing, SUN Nannan. Preparation and performance of carbon supported potassium-based CO2 adsorbent derived from hyper-cross linked polymers [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1540-1550. |
[5] | LIU Dan, FAN Yunjie, WANG Huimin, YAN Zheng, LI Pengfei, LI Jiacheng, CAO Xuebo. High value-added functional porous carbon materials from waste PET and their applications [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 969-984. |
[6] | ZHANG Qingqing, BI Haipu, SHU Zhongjun, OU Hongxiang, WANG Shangbin, WANG Junqi, PAN Yi. Research progress on control behaviors and substitutes of PFOS in foam extinguishing agents [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 340-350. |
[7] | WU Yushuai, YOU Qing, DONG Xujie, ZHU Ziqi, WANG Xu, CHEN Huiyong, MA Xiaoxun. Synthesis of heteroatom-substituted beta zeolites for catalytic epoxidation of cyclic olefins [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4192-4203. |
[8] | LONG Hongming, DING Long, QIAN Lixin, CHUN Tiejun, ZHANG Hongliang, YU Zhengwei. Current situation and development trend of NO x and dioxins emission reduction in sintering flue gas [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3865-3876. |
[9] | YANG Xueping. Exploration on technical path of modern coal chemical industry under the background of carbon neutralization [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3402-3412. |
[10] | MU Yanjun, SONG Qianqian, WANG Hongqiu, FU Kaimei, XUE Jing, WANG Chunjiao. Strategy and inspiration of low-carbon development in the USA petrochemical industry [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 2797-2805. |
[11] | HE Shengbao, HUANG Gesheng. The new chemical materials industry and its role in low carbon development [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1634-1644. |
[12] | ZHENG Peng, LI Weiling, GUO Yafei, SUN Jian, WANG Ruilin, ZHAO Chuanwen. Analysis of carbide slag accelerated carbonation in bubble column and response surface optimization [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1528-1538. |
[13] | SHANG Li, LIU Shuang, SHEN Qun, ZHANG Lingyun, SUN Nannan, WEI Wei. Comprehensive evaluation of low carbon performance of typical carbon dioxide utilization technologies [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1199-1208. |
[14] | XU Ming, SHAO Mingfei, LIU Qingya, DUAN Xue. Hydrogen generation from electrochemical water splitting coupling carbonate reduction [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1121-1124. |
[15] | TIAN Yuanyu, QIAO Yingyun, ZHANG Yongning. Construction of green emission reduction system under the constraint of carbon neutrality [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 1078-1084. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |