Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (10): 5470-5486.DOI: 10.16085/j.issn.1000-6613.2022-2105
• Resources and environmental engineering • Previous Articles Next Articles
YANG Kailu1,2(), CHEN Mingxing1,2(), WANG Xinya1,2, ZHANG Wei1,2, XIAO Changfa3
Received:
2022-11-14
Revised:
2023-01-10
Online:
2023-11-11
Published:
2023-10-15
Contact:
CHEN Mingxing
杨凯璐1,2(), 陈明星1,2(), 王新亚1,2, 张威1,2, 肖长发3
通讯作者:
陈明星
作者简介:
杨凯璐(1999—),女,硕士研究生,研究方向为纳滤膜的制备及性能调控。E-mail: yang170901323@163.com。
基金资助:
CLC Number:
YANG Kailu, CHEN Mingxing, WANG Xinya, ZHANG Wei, XIAO Changfa. Research progress of preparation and modification of nanofiltration membrane for dye wastewater treatment[J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5470-5486.
杨凯璐, 陈明星, 王新亚, 张威, 肖长发. 染料废水处理用纳滤膜制备及改性研究进展[J]. 化工进展, 2023, 42(10): 5470-5486.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-2105
成膜聚合物 | 改性添加剂 | 膜形式 | 通量/L·m-2·h-1·bar-1 | 染料截留率/% | 参考文献 |
---|---|---|---|---|---|
PES | APTS-GO | 平板膜 | 9.9 | 97.4(SY)、96.5(AO) | [ |
PES | β-CD/MWCNT | 平板膜 | 4.3 | 93.1(DR16) | [ |
PES | MoS2-PSBMA | 平板膜 | 18.1 | 99.3(RG19)、98.2(RB5) | [ |
PES | PABFNP | 平板膜 | 16.05 | 99(DR16)、98.42(MeBe) | [ |
PSf | PES-COOH | 中空纤维膜 | 159.6 | 99.2(CR) | [ |
成膜聚合物 | 改性添加剂 | 膜形式 | 通量/L·m-2·h-1·bar-1 | 染料截留率/% | 参考文献 |
---|---|---|---|---|---|
PES | APTS-GO | 平板膜 | 9.9 | 97.4(SY)、96.5(AO) | [ |
PES | β-CD/MWCNT | 平板膜 | 4.3 | 93.1(DR16) | [ |
PES | MoS2-PSBMA | 平板膜 | 18.1 | 99.3(RG19)、98.2(RB5) | [ |
PES | PABFNP | 平板膜 | 16.05 | 99(DR16)、98.42(MeBe) | [ |
PSf | PES-COOH | 中空纤维膜 | 159.6 | 99.2(CR) | [ |
基膜 | 水相/油相 | 纳米填料 | 通量/L·m-2·h-1·bar-1 | 染料截留率/% | 参考文献 |
---|---|---|---|---|---|
PMIA | Lys/TMC | — | 17.9 | 99.65(CBBG),98.66(CR) | [ |
PSf | SPEI /TMC | — | 41.1 | [ | |
PSf | PEA/TMC | — | 16.6 | 95.4(VBB) | [ |
PSf | SDA/TMC | — | 10.4 | 99.9(CR、MeBe、MB、BG) | [ |
PSf | PIP/TMC | CQD/TiO2 | 11.2 | 99.8(CR), 99.1(MB) | [ |
PTFE | PEI/TMC | PEI-CNT | 48.98 | 99.47(CR) | [ |
PI | MPD/TMC | COFs | 7.98 | 99.4(RhB) | [ |
PES | PIP/TMC | ATP | 22.95 | 94.7(Orange GⅡ) | [ |
基膜 | 水相/油相 | 纳米填料 | 通量/L·m-2·h-1·bar-1 | 染料截留率/% | 参考文献 |
---|---|---|---|---|---|
PMIA | Lys/TMC | — | 17.9 | 99.65(CBBG),98.66(CR) | [ |
PSf | SPEI /TMC | — | 41.1 | [ | |
PSf | PEA/TMC | — | 16.6 | 95.4(VBB) | [ |
PSf | SDA/TMC | — | 10.4 | 99.9(CR、MeBe、MB、BG) | [ |
PSf | PIP/TMC | CQD/TiO2 | 11.2 | 99.8(CR), 99.1(MB) | [ |
PTFE | PEI/TMC | PEI-CNT | 48.98 | 99.47(CR) | [ |
PI | MPD/TMC | COFs | 7.98 | 99.4(RhB) | [ |
PES | PIP/TMC | ATP | 22.95 | 94.7(Orange GⅡ) | [ |
1 | 贾艳萍, 张真, 毕朕豪, 等. 铁碳微电解处理印染废水的效能及生物毒性变化[J]. 化工进展, 2020, 39(2): 790-797. |
JIA Yanping, ZHANG Zhen, BI Zhenhao, et al. Efficiency and biological toxicity of iron-carbon microelectrolysis in treatment of the dye wastewater[J]. Chemical Industry and Engineering Progress, 2020, 39(2): 790-797. | |
2 | HOLKAR Chandrakant R, JADHAV Ananda J, PINJARI Dipak V, et al. A critical review on textile wastewater treatments: Possible approaches[J]. Journal of Environmental Management, 2016, 182: 351-366. |
3 | ZHOU Minghua, Heikki SÄRKKÄ, Mika SILLANPÄÄ. A comparative experimental study on Methyl orange degradation by electrochemical oxidation on BDD and MMO electrodes[J]. Separation and Purification Technology, 2011, 78(3): 290-297. |
4 | XU Hui, YANG Bo, LIU Yanbiao, et al. Recent advances in anaerobic biological processes for textile printing and dyeing wastewater treatment: A mini-review[J]. World Journal of Microbiology and Biotechnology, 2018, 34(11): 165. |
5 | GONG Hui, JIN Zhengyu, XU Heng, et al. Redesigning C and N mass flows for energy-neutral wastewater treatment by coagulation adsorption enhanced membrane (CAEM)-based pre-concentration process[J]. Chemical Engineering Journal, 2018, 342: 304-309. |
6 | FENG Xiaoquan, PENG Donglai, ZHU Junyong, et al. Recent advances of loose nanofiltration membranes for dye/salt separation[J]. Separation and Purification Technology, 2022, 285: 120228. |
7 | LU Dan, YAO Zhikan, JIAO Lei, et al. Separation mechanism, selectivity enhancement strategies and advanced materials for mono-/multivalent ion-selective nanofiltration membrane[J]. Advanced Membranes, 2022, 2: 100032. |
8 | XU Ruizhang, WANG Jiantao, CHEN Dandan, et al. Preparation and performance of a charge-mosaic nanofiltration membrane with novel salt concentration sensitivity for the separation of salts and dyes[J]. Journal of Membrane Science, 2020, 595: 117472. |
9 | 黄健, 舒增年, 张四海. 高通量聚醚砜纳滤膜的制备及对染料浓缩脱盐[J]. 化工学报, 2014, 65(10): 3968-3975. |
HUANG Jian, SHU Zengnian, ZHANG Sihai. Fabrication of high flux polyethersulfone nanofiltration membrane for dye concentration and desalination[J]. CIESC Journal, 2014, 65(10): 3968-3975. | |
10 | Rosario CERVELLERE M, QIAN Xianghong, FORD David M, et al. Phase-field modeling of non-solvent induced phase separation (NIPS) for PES/NMP/Water with comparison to experiments[J]. Journal of Membrane Science, 2021, 619: 118779. |
11 | LIU Yapin, WANG Jing, WANG Yu, et al. High-flux robust PSf-b-PEG nanofiltration membrane for the precise separation of dyes and salts[J]. Chemical Engineering Journal, 2021, 405: 127051. |
12 | YU Liang, DENG Jianmian, WANG Huixian, et al. Improved salts transportation of a positively charged loose nanofiltration membrane by introduction of poly(ionic liquid) functionalized hydrotalcite nanosheets[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(6): 3292-3304. |
13 | RUAN Huimin, GUO Changmeng, YU Hongwei, et al. Fabrication of a MIL-53(Al) nanocomposite membrane and potential application in desalination of dye solutions[J]. Industrial & Engineering Chemistry Research, 2016, 55(46): 12099-12110. |
14 | THONG Zhiwei, GAO Jie, Jia Xi Zoe LIM, et al. Fabrication of loose outer-selective nanofiltration (NF) polyethersulfone (PES) hollow fibers via single-step spinning process for dye removal[J]. Separation and Purification Technology, 2018, 192: 483-490. |
15 | JI Dawei, XIAO Changfa, AN Shulin, et al. Preparation of high-flux PSF/GO loose nanofiltration hollow fiber membranes with dense-loose structure for treating textile wastewater[J]. Chemical Engineering Journal, 2019, 363: 33-42. |
16 | LUQUE-ALLED Jose Miguel, Ahmed ABDEL-KARIM, ALBERTO Monica, et al. Polyethersulfone membranes: From ultrafiltration to nanofiltration via the incorporation of APTS functionalized-graphene oxide[J]. Separation and Purification Technology, 2020, 230: 115836. |
17 | RAHIMI Zahra, ZINATIZADEH Ali Akbar, ZINADINI S, et al. β-cyclodextrin functionalized MWCNTs as a promising antifouling agent in fabrication of composite nanofiltration membranes[J]. Separation and Purification Technology, 2020, 247: 116979. |
18 | LIANG Xu, WANG Penghui, WANG Jing, et al. Zwitterionic functionalized MoS2 nanosheets for a novel composite membrane with effective salt/dye separation performance[J]. Journal of Membrane Science, 2019, 573: 270-279. |
19 | MORADI Golshan, ZINADINI Sirus, RAJABI Laleh. Development of high flux nanofiltration membrane using para-amino benzoate ferroxane nanoparticle for enhanced antifouling behavior and dye removal[J]. Process Safety and Environmental Protection, 2020, 144: 65-78. |
20 | YAO Dongxue, ZHANG Fan, FENG Guangli, et al. High-flux PSF/PES-COOH hollow fiber loose nanofiltration membrane for high-efficiency dye-salt separation[J]. Journal of Environmental Chemical Engineering, 2022, 10(4): 108180. |
21 | 黄海, 张雅琴, 钱建勇, 等. 中空纤维纳滤膜材料与制备研究进展[J]. 高校化学工程学报, 2022, 36(3): 307-317. |
HUANG Hai, ZHANG Yaqin, QIAN Jianyong, et al. Review on hollow fiber nanofiltration membrane materials and their fabrication processes[J]. Journal of Chemical Engineering of Chinese Universities, 2022, 36(3): 307-317. | |
22 | FAN Xiaochen, DONG Yanan, SU Yanlei, et al. Improved performance of composite nanofiltration membranes by adding calcium chloride in aqueous phase during interfacial polymerization process[J]. Journal of Membrane Science, 2014, 452: 90-96. |
23 | 秘一芳, 安全福. 界面聚合聚酰胺纳滤膜渗透选择性能优化的研究进展[J]. 化工进展, 2020, 39(6): 2093-2104. |
MI Yifang, AN Quanfu. Progress in optimization of polyamide nanofiltration membranes prepared by interfacial polymerization for perm-selectivity[J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2093-2104. | |
24 | PAUL Mou, JONS Steven D. Chemistry and fabrication of polymeric nanofiltration membranes: A review[J]. Polymer, 2016, 103: 417-456. |
25 | LI Qin, LIAO Zhipeng, FANG Xiaofeng, et al. Tannic acid assisted interfacial polymerization based loose thin-film composite NF membrane for dye/salt separation[J]. Desalination, 2020, 479: 114343. |
26 | Chisiang ONG, FALCA Gheorghe, HUANG Tiefan, et al. Green synthesis of thin-film composite membranes for organic solvent nanofiltration[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(31): 11541-11548. |
27 | XUE Jing, JIAO Zhiwei, BI Ran, et al. Chlorine-resistant polyester thin film composite nanofiltration membranes prepared with β-cyclodextrin[J]. Journal of Membrane Science, 2019, 584: 282-289. |
28 | GUO Shiwei, WAN Yinhua, CHEN Xiangrong, et al. Loose nanofiltration membrane custom-tailored for resource recovery[J]. Chemical Engineering Journal, 2021, 409: 127376. |
29 | CHEW Yitong, YONG Waifen. Recent advances of thin film nanocomposite membranes: Effects of shape/structure of nanomaterials and interfacial polymerization methods[J]. Chemical Engineering Research and Design, 2021, 172: 135-158. |
30 | ZHAO Dieling, JAPIP Susilo, ZHANG Yu, et al. Emerging thin-film nanocomposite (TFN) membranes for reverse osmosis: A review[J]. Water Research, 2020, 173: 115557. |
31 | LIAO Zhipeng, ZHU Junyong, LI Xin, et al. Regulating composition and structure of nanofillers in thin film nanocomposite (TFN) membranes for enhanced separation performance: A critical review[J]. Separation and Purification Technology, 2021, 266: 118567. |
32 | MANSOURPANAH Yaghoub, GHANBARI Arezoo, YAZDANI Hessam, et al. Silver-polyamidoamine/graphene oxide thin film nanofiltration membrane with improved antifouling and antibacterial properties for water purification and desalination[J]. Desalination, 2021, 511: 115109. |
33 | MI Yifang, WANG Na, FANG Xingyu, et al. Interfacial polymerization nanofiltration membrane with visible light photocatalytic self-cleaning performance by incorporation of CQD/TiO2 [J]. Separation and Purification Technology, 2021, 277: 119500. |
34 | ABADIKHAH Hamidreza, NADERI KALALI Ehsan, KHODI Samaneh, et al. Multifunctional thin-film nanofiltration membrane incorporated with reduced graphene oxide@TiO2@Ag nanocomposites for high desalination performance, dye retention, and antibacterial properties[J]. ACS Applied Materials & Interfaces, 2019, 11(26): 23535-23545. |
35 | WAHEED Abdul, BAIG Umair, ANSARI Mohammad Azam. Fabrication of CuO nanoparticles immobilized nanofiltration composite membrane for dye/salt fractionation: Performance and antibiofouling[J]. Journal of Environmental Chemical Engineering, 2022, 10(1): 106960. |
36 | 魏恋璎, 陈明星, 张威. PMIA/PA-MZIF-8复合纳滤膜的制备及其在染料废水处理中的应用[J]. 印染, 2021, 47(9): 55-60, 65. |
WEI Lianying, CHEN Mingxing, ZHANG Wei. Preparation of PMIA/PA-MZIF-8 composite nanofiltration membrane and its application for dye purification[J]. China Dyeing & Finishing, 2021, 47(9): 55-60, 65. | |
37 | ZHANG Kai, YANG Kang, CHEN Yingbo, et al. Ionic and pH responsive thin film composite hollow fiber nanofiltration membrane for molecular separation[J]. Desalination, 2020, 496: 114709. |
38 | DING Jincheng, WU Huiqing, WU Peiyi. Preparation of highly permeable loose nanofiltration membranes using sulfonated polyethylenimine for effective dye/salt fractionation[J]. Chemical Engineering Journal, 2020, 396: 125199. |
39 | MI Yifang, WANG Na, QI Qi, et al. A loose polyamide nanofiltration membrane prepared by polyether amine interfacial polymerization for dye desalination[J]. Separation and Purification Technology, 2020, 248: 117079. |
40 | DING Jincheng, WU Huiqing, WU Peiyi. Development of nanofiltration membranes using mussel-inspired sulfonated dopamine for interfacial polymerization[J]. Journal of Membrane Science, 2020, 598: 117658. |
41 | CHEN Liye, JIANG Mengying, ZOU Qian, et al. Highly permeable carbon nanotubes/polyamide layered membranes for molecular sieving[J]. Chemical Engineering Journal, 2021, 425: 130684. |
42 | LI Can, LI Shuxuan, TIAN Long, et al. Covalent organic frameworks (COFs)-incorporated thin film nanocomposite (TFN) membranes for high-flux organic solvent nanofiltration (OSN)[J]. Journal of Membrane Science, 2019, 572: 520-531. |
43 | WU Mengyuan, MA Tianyi, SU Yanlei, et al. Fabrication of composite nanofiltration membrane by incorporating attapulgite nanorods during interfacial polymerization for high water flux and antifouling property[J]. Journal of Membrane Science, 2017, 544: 79-87. |
44 | BANDEHALI Samaneh, PARVIZIAN Fahime, RUAN Huimin, et al. A planned review on designing of high-performance nanocomposite nanofiltration membranes for pollutants removal from water[J]. Journal of Industrial and Engineering Chemistry, 2021, 101: 78-125. |
45 | KARAN Santanu, JIANG Zhiwei, LIVINGSTON Andrew G. Sub-10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation[J]. Science, 2015, 348(6241): 1347-1351. |
46 | ZHU Xuewu, ZHANG Xinyu, LI Jinyu, et al. Crumple-textured polyamide membranes via MXene nanosheet-regulated interfacial polymerization for enhanced nanofiltration performance[J]. Journal of Membrane Science, 2021, 635: 119536. |
47 | CHEN Kuo, LI Peng, ZHANG Hongyu, et al. Organic solvent nanofiltration membrane with improved permeability by in situ growth of metal-organic frameworks interlayer on the surface of polyimide substrate[J]. Separation and Purification Technology, 2020, 251: 117387. |
48 | LU Yang, WANG Zhenyi, FANG Wangxi, et al. Polyamide thin films grown on PD/SWCNT-interlayered-PTFE microfiltration membranes for high-permeance organic solvent nanofiltration[J]. Industrial & Engineering Chemistry Research, 2020, 59(52): 22533-22540. |
49 | ZHANG Tonghui, LI Peiyun, DING Siping, et al. High permeability composite nanofiltration membrane assisted by introducing TpPa covalent organic frameworks interlayer with nanorods for desalination and NaCl/dye separation[J]. Separation and Purification Technology, 2021, 270: 118802. |
50 | CHOWDHURY Maqsud R, STEFFES James, HUEY Bryan D, et al. 3D printed polyamide membranes for desalination[J]. Science, 2018, 361: 682-686. |
51 | CHEN Jingjing, ZHANG Jie, WU Xiaoli, et al. Accurately controlling the hierarchical nanostructure of polyamide membranes via electrostatic atomization-assisted interfacial polymerization[J]. Journal of Materials Chemistry A, 2020, 8(18): 9160-9167. |
52 | KANG Yesol, JANG Jaewon, KIM Suhun, et al. PIP/TMC interfacial polymerization with electrospray: Novel loose nanofiltration membrane for dye wastewater treatment[J]. ACS Applied Materials & Interfaces, 2020, 12(32): 36148-36158. |
53 | MA Xiaohua, GUO Hao, YANG Zhe, et al. Carbon nanotubes enhance permeability of ultrathin polyamide rejection layers[J]. Journal of Membrane Science, 2019, 570-571: 139-145. |
54 | YANG Simin, WANG Jianqiang, FANG Lifeng, et al. Electrosprayed polyamide nanofiltration membrane with intercalated structure for controllable structure manipulation and enhanced separation performance[J]. Journal of Membrane Science, 2020, 602: 117971. |
55 | ZHANG Weilin, WANG Jianqiang, GENG Xiaolan, et al. Electrosprayed polyamide nanofiltration membrane with uniform and tunable pores for sub-nm precision molecule separation[J]. Separation and Purification Technology, 2022, 282: 120131. |
56 | QIAN Xin, RAVINDRAN Tulasi, LOUNDER Samuel J, et al. Printing zwitterionic self-assembled thin film composite membranes: Tuning thickness leads to remarkable permeability for nanofiltration[J]. Journal of Membrane Science, 2021, 635: 119428. |
57 | MA Zhongbao, REN Longfei, YING Diwen, et al. Sustainable electrospray polymerization fabrication of thin-film composite polyamide nanofiltration membranes for heavy metal removal[J]. Desalination, 2022, 539: 115952. |
58 | MA Zhongbao, REN Longfei, YING Diwen, et al. Electrospray interface-less polymerization to fabricate high-performance thin film composite polyamide membranes with controllable skin layer growth[J]. Journal of Membrane Science, 2021, 632: 119369. |
59 | LEE Haeshin, DELLATORE Shara M, MILLER William M, et al. Mussel-inspired surface chemistry for multifunctional coatings[J]. Science, 2007, 318(5849): 426-430. |
60 | YANG Haocheng, WALDMAN Ruben Z, WU Mingbang, et al. Dopamine: Just the right medicine for membranes[J]. Advanced Functional Materials, 2018, 28(8): 1705327. |
61 | 吕嫣, 杜勇, 杨尚锦, 等. 基于“可控”表界面工程的聚合物纳滤膜[J]. 高分子学报, 2017(12): 1905-1914. |
Yan LYU, DU Yong, YANG Shangjin, et al. Polymer nanofiltration membranes via controlled surface/interface engineering[J]. Acta Polymerica Sinica, 2017(12): 1905-1914. | |
62 | 唐安琪, 路景驭, 冯炜林, 等. 界面交联制备聚多巴胺复合纳滤膜的性能调控[J]. 高分子学报, 2018(12): 1524-1531. |
TANG Anqi, LU Jingyu, FENG Weilin, et al. Performance control of polydopamine compsite nanofiltration membranes fabricated by interfacial crosslinking[J]. Acta Polymerica Sinica, 2018(12): 1524-1531. | |
63 | WANG Jianqiang, PEI Xiaoqiang, LIU Ge, et al. “Living” electrospray-A controllable polydopamine nano-coating strategy with zero liquid discharge for separation[J]. Journal of Membrane Science, 2019, 586: 170-176. |
64 | WANG Jing, ZHU Junyong, TSEHAYE Misgina Tilahun, et al. High flux electroneutral loose nanofiltration membranes based on rapid deposition of polydopamine/polyethyleneimine[J]. Journal of Materials Chemistry A, 2017, 5(28): 14847-14857. |
65 | WANG Zhenxing, YANG Haocheng, HE Fang, et al. Mussel-inspired surface engineering for water-remediation materials[J]. Matter, 2019, 1(1): 115-155. |
66 | 李泽辉, 崔恒, 王军. 氯化聚氯乙烯复合纳滤膜的制备及其在模拟RB5染料废水处理中的应用[J]. 化工进展, 2021, 40(S1): 456-465. |
LI Zehui, CUI Heng, WANG Jun. Preparation of CPVC composite nanofiltration membrane and its application in simulated RB5 dye wastewater treatment[J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 456-465. | |
67 | LI Qin, LIAO Zhipeng, FANG Xiaofeng, et al. Tannic acid-polyethyleneimine crosslinked loose nanofiltration membrane for dye/salt mixture separation[J]. Journal of Membrane Science, 2019, 584: 324-332. |
68 | 姜泽源, 陶瑞, 王军. PA/蒽醌/PVDF复合纳滤膜结构与性能及其应用[J]. 环境工程学报, 2022, 16(4): 1218-1226. |
JIANG Zeyuan, TAO Rui, WANG Jun. Structure, properties and application of PA/Anthraquinone/PVDF composite nanofiltration membrane[J]. Chinese Journal of Environmental Engineering, 2022, 16(4): 1218-1226. | |
69 | XU Yanchao, WANG Zhenxing, CHENG Xiquan, et al. Positively charged nanofiltration membranes via economically mussel-substance-simulated co-deposition for textile wastewater treatment[J]. Chemical Engineering Journal, 2016, 303: 555-564. |
70 | ZHANG Na, JIANG Bin, ZHANG Luhong, et al. Low-pressure electroneutral loose nanofiltration membranes with polyphenol-inspired coatings for effective dye/divalent salt separation[J]. Chemical Engineering Journal, 2019, 359: 1442-1452. |
71 | XU Yanchao, GUO Dongxue, LI Tong, et al. Manipulating the mussel-inspired co-deposition of tannic acid and amine for fabrication of nanofiltration membranes with an enhanced separation performance[J]. Journal of Colloid and Interface Science, 2020, 565: 23-34. |
72 | WANG Jing, HE Rongrong, HAN Xinwei, et al. High performance loose nanofiltration membranes obtained by a catechol-based route for efficient dye/salt separation[J]. Chemical Engineering Journal, 2019, 375: 121982. |
73 | CHENG Xiquan, WANG Zhenxing, ZHANG Yanqiu, et al. Bio-inspired loose nanofiltration membranes with optimized separation performance for antibiotics removals[J]. Journal of Membrane Science, 2018, 554: 385-394. |
74 | YAN Zhongsen, ZHANG Yuehua, YANG Haiyang, et al. Mussel-inspired polydopamine modification of polymeric membranes for the application of water and wastewater treatment: A review[J]. Chemical Engineering Research and Design, 2020, 157: 195-214. |
75 | WANG Chen, PARK Myoung Jun, YU Hanwei, et al. Recent advances of nanocomposite membranes using layer-by-layer assembly[J]. Journal of Membrane Science, 2022, 661: 120926. |
76 | YANG Yazhi, LAN Qianqian, WANG Yong. Gradient nanoporous phenolics as substrates for high-flux nanofiltration membranes by layer-by-layer assembly of polyelectrolytes[J]. Chinese Journal of Chemical Engineering, 2020, 28(1): 114-121. |
77 | LIU Lei, QU Shaoyi, YANG Zhaoxian, et al. Fractionation of dye/NaCl mixtures using loose nanofiltration membranes based on the incorporation of WS2 in self-assembled layer-by-layer polymeric electrolytes[J]. Industrial & Engineering Chemistry Research, 2020, 59(40): 18160-18169. |
78 | YAN Xiaoju, TAO Wen, CHENG Shirong, et al. Layer-by-layer assembly of bio-inspired borate/graphene oxide membranes for dye removal[J]. Chemosphere, 2020, 256: 127118. |
79 | 余亚伟, 周勇, 高从堦. 涂覆法制备高性能磺化聚醚砜混合基质膜[J]. 化工学报, 2017, 68(4): 1676-1683. |
YU Yawei, ZHOU Yong, GAO Congjie. A novel SPES mixed matrix membrane with excellent performance prepared by manual coating method[J]. CIESC Journal, 2017, 68(4): 1676-1683. | |
80 | MENG Yingshuang, SHU Lun, LIU Lu, et al. A high-flux mixed matrix nanofiltration membrane with highly water-dispersible MOF crystallites as filler[J]. Journal of Membrane Science, 2019, 591: 117360. |
81 | CHEN Yingdong, SUN Rongze, YAN Wentao, et al. Antibacterial polyvinyl alcohol nanofiltration membrane incorporated with Cu(OH)2 nanowires for dye/salt wastewater treatment[J]. Science of the Total Environment, 2022, 817: 152897. |
82 | 何鹏鹏, 赵颂, 毛晨岳, 等. 耐溶剂复合纳滤膜的研究进展[J]. 化工学报, 2021, 72(2): 727-747. |
HE Pengpeng, ZHAO Song, MAO Chenyue, et al. Research progress of solvent-resistant composite nanofiltration membrane[J]. CIESC Journal, 2021, 72(2): 727-747. | |
83 | CHIAO Yuhsuan, CHEN Shuting, ANG Micah Belle Marie Yap, et al. High-performance polyacrylic acid-grafted PVDF nanofiltration membrane with good antifouling property for the textile industry[J]. Polymers, 2020, 12(11): 2443. |
84 | YUAN Fang, YANG Yi, WANG Rui, et al. Poly(vinylidene fluoride) grafted polystyrene (PVDF-g-PS) membrane based on in situ polymerization for solvent resistant nanofiltration[J]. RSC Advances, 2017, 7(53): 33201-33207. |
85 | JIN Jinbo, DU Xilan, YU Jie, et al. High performance nanofiltration membrane based on SMA-PEI cross-linked coating for dye/salt separation[J]. Journal of Membrane Science, 2020, 611: 118307. |
86 | HU Dujuan, LI Yanbo, YAN Zhiguo, et al. Anti-fouling nanofiltration membranes based on macromolecule crosslinked polyvinyl alcohol[J]. Journal of Industrial and Engineering Chemistry, 2022, 112: 348-357. |
87 | 李希鹏, 胡晓宇, 张宇峰, 等. 纳滤膜制备方法的研究[J]. 化工新型材料, 2015, 43(7): 227-229. |
LI Xipeng, HU Xiaoyu, ZHANG Yufeng, et al. Research of preparation technique of nanofiltration membrane[J]. New Chemical Materials, 2015, 43(7): 227-229. | |
88 | 刘兴, 邓慧宇, 段龙繁, 等. 抗污染高分子纳滤膜研究进展[J]. 膜科学与技术, 2018, 38(5): 113-121. |
LIU Xing, DENG Huiyu, DUAN Longfan, et al. Development of anti-fouling polymeric nanofiltration membranes[J]. Membrane Science and Technology, 2018, 38(5): 113-121. | |
89 | NIKOOE Naeme, SALJOUGHI Ehsan. Preparation and characterization of novel PVDF nanofiltration membranes with hydrophilic property for filtration of dye aqueous solution[J]. Applied Surface Science, 2017, 413: 41-49. |
90 | RAHIMI Zahra, ZINATIZADEH Ali Akbar, ZINADINI Sirus, et al. A hydrophilic and antifouling nanofiltration membrane modified by citric acid functionalized tannic acid (CA-f-TA) nanocomposite for dye removal from biologically treated baker’s yeast wastewater[J]. Journal of Environmental Chemical Engineering, 2021, 9(1): 104963. |
91 | YE Wenyuan, LIU Hongwei, LIN Fang, et al. High-flux nanofiltration membranes tailored by bio-inspired co-deposition of hydrophilic g-C3N4 nanosheets for enhanced selectivity towards organics and salts[J]. Environmental Science: Nano, 2019, 6(10): 2958-2967. |
92 | AGHILI Fatemeh, GHOREYSHI Ali Asghar, VAN DER BRUGGEN Bart, et al. Introducing gel-based UiO-66-NH2 into polyamide matrix for preparation of new super hydrophilic membrane with superior performance in dyeing wastewater treatment[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105484. |
93 | 李春, 贾萌萌, 张梦蕾, 等. 基于羟丙基-β-环糊精的界面聚合纳滤膜及其性能研究[J]. 膜科学与技术, 2021, 41(6): 118-125. |
LI Chun, JIA Mengmeng, ZHANG Menglei, et al. The interface polymerized nanofiltration membrane with hydroxypropyl-β-cyclodextrin as aqueous monomer[J]. Membrane Science and Technology, 2021, 41(6): 118-125. | |
94 | XUE Jing, SHEN Jianliang, ZHANG Runnan, et al. High-flux nanofiltration membranes prepared with β-cyclodextrin and graphene quantum dots[J]. Journal of Membrane Science, 2020, 612: 118465. |
95 | ANG Micah Belle Marie Yap, HUANG Guanwei, CHU Minyi, et al. Use of aqueous polyol monomer for superior dye separation performance and high chlorine resistance of thin-film composite polyester nanofiltration membranes[J]. Journal of Water Process Engineering, 2022, 48: 102843. |
96 | CHENG Jun, SHI Wenxin, ZHANG Lanhe, et al. A novel polyester composite nanofiltration membrane formed by interfacial polymerization of pentaerythritol (PE) and trimesoyl chloride (TMC)[J]. Applied Surface Science, 2017, 416: 152-159. |
97 | JIN Pengrui, ZHU Junyong, YUAN Shushan, et al. Erythritol-based polyester loose nanofiltration membrane with fast water transport for efficient dye/salt separation[J]. Chemical Engineering Journal, 2021, 406: 126796. |
98 | FENG Xiaoquan, LIU Decheng, YE Hu, et al. High-flux polyamide membrane with improved chlorine resistance for efficient dye/salt separation based on a new N-rich amine monomer[J]. Separation and Purification Technology, 2021, 278: 119533. |
99 | CAO Yang, LUO Jianquan, CHEN Chulong, et al. Highly permeable acid-resistant nanofiltration membrane based on a novel sulfonamide aqueous monomer for efficient acidic wastewater treatment[J]. Chemical Engineering Journal, 2021, 425: 131791. |
100 | SUN Haixiang, CHEN Yuhao, LIU Jiahui, et al. A novel chlorine-resistant polyacrylate nanofiltration membrane constructed from oligomeric phenolic resin[J]. Separation and Purification Technology, 2021, 262: 118300. |
101 | ZHU Xuewu, CHENG Xiaoxiang, XING Jiajian, et al. In-situ covalently bonded supramolecular-based protective layer for improving chlorine resistance of thin-film composite nanofiltration membranes[J]. Desalination, 2020, 474: 114197. |
102 | BAIG Nadeem, MATIN Asif, FAIZAN M, et al. Antifouling low-pressure highly permeable single step produced loose nanofiltration polysulfone membrane for efficient Erichrome Black T/divalent salts fractionation[J]. Journal of Environmental Chemical Engineering, 2022, 10(4): 108166. |
103 | ZHU Lifang, WU Mengyao, VAN DER BRUGGEN Bart, et al. Effect of TiO2 content on the properties of polysulfone nanofiltration membranes modified with a layer of TiO2-graphene oxide[J]. Separation and Purification Technology, 2020, 242: 116770. |
104 | ZHOU Siyu, FENG Xiaoquan, ZHU Junyong, et al. Self-cleaning loose nanofiltration membranes enabled by photocatalytic Cu-triazolate MOFs for dye/salt separation[J]. Journal of Membrane Science, 2021, 623: 119058. |
105 | ZHAI Xiaofei, CHEN Bingqian, HE Yaoting, et al. A novel loose nanofiltration membrane with superior anti-biofouling performance prepared from zwitterion-grafted chitosan[J]. Journal of the Taiwan Institute of Chemical Engineers, 2022, 132: 104191. |
106 | ZHANG Lili, XU Li, YU Hongyan, et al. Capsaicin mimic-polyethyleneimine crosslinked antifouling loose nanofiltration membrane for effective dye/salt wastewater treatment[J]. Journal of Membrane Science, 2022, 641: 119923. |
107 | ZHAO Shuang, SONG Peng, WANG Zhan, et al. The PEGylation of plant polyphenols/polypeptide-mediated loose nanofiltration membrane for textile wastewater treatment and antibacterial application[J]. Journal of theTaiwanInstitute of Chemical Engineers, 2018, 82: 42-55. |
108 | JIN Pengrui, ZHENG Junfeng, GAO Qieyuan, et al. Loose nanofiltration membranes for the treatment of textile wastewater: A review[J]. Journal of Membrane Science and Research, 2022, 8(3): 538529. |
109 | ZHANG Wentian, GUO Dongxue, LI Zhiwen, et al. A new strategy to accelerate co-deposition of plant polyphenol and amine for fabrication of antibacterial nanofiltration membranes by in situ grown Ag nanoparticles[J]. Separation and Purification Technology, 2022, 280: 119866. |
110 | LI Jian, YUAN Shushan, ZHU Junyong, et al. High-flux, antibacterial composite membranes via polydopamine-assisted PEI-TiO2/Ag modification for dye removal[J]. Chemical Engineering Journal, 2019, 373: 275-284. |
111 | 俞炯弛, 马梦琪, 朱城业, 等. 层状MoS2复合膜的制备及其纳滤与光热抗菌性能研究[J]. 高分子学报, 2021, 52(5): 505-513. |
YU Jiongchi, MA Mengqi, ZHU Chengye, et al. MoS2 membranes with photothermal conversion property for nanofiltration and antibacterial activity[J]. Acta Polymerica Sinica, 2021, 52(5): 505-513. | |
112 | LIU Yingying, DU Jiao, WU Haowen, et al. Antifouling streptomycin-based nanofiltration membrane with high permselectivity for dye/salt separation[J]. Separation and Purification Technology, 2022, 297: 121443. |
113 | SONTAKKE Ankush D, Pranjal P DAS, MONDAL Piyal, et al. Thin-film composite nanofiltration hollow fiber membranes toward textile industry effluent treatment and environmental remediation applications: Review[J]. Emergent Materials, 2022, 5(5): 1409-1427. |
114 | TURKEN Turker, Reyhan SENGUR-TASDEMIR, Esra ATES-GENCELI, et al. Progress on reinforced braided hollow fiber membranes in separation technologies: A review[J]. Journal of Water Process Engineering, 2019, 32: 100938. |
115 | QIN Yang, LIU Hailiang, LIU Yueming, et al. Design of a novel interfacial enhanced GO-PA/APVC nanofiltration membrane with stripe-like structure[J]. Journal of Membrane Science, 2020, 604: 118064. |
116 | LI Can, LI Shuxuan, Li LYU, et al. High solvent-resistant and integrally crosslinked polyimide-based composite membranes for organic solvent nanofiltration[J]. Journal of Membrane Science, 2018, 564: 10-21. |
117 | 李青青, 朱振亚, 王磊, 等. 氧化石墨烯改性PVDF/PET复合膜的制备及其抗污染性能[J]. 环境工程学报, 2018, 12(1): 25-33. |
LI Qingqing, ZHU Zhenya, WANG Lei, et al. Preparation and antifouling performance of graphene oxide modified PVDF/PET composite membrane[J]. Chinese Journal of Environmental Engineering, 2018, 12(1): 25-33. | |
118 | CHU Zhiyong, CHEN Kaikai, XIAO Changfa, et al. Improving pressure durability and fractionation property via reinforced PES loose nanofiltration hollow fiber membranes for textile wastewater treatment[J]. Journal of the Taiwan Institute of Chemical Engineers, 2020, 108: 71-81. |
119 | WANG Chuanfeng, CHEN Yingbo, HU Xiaoyu, et al. Scalable dual-layer PVDF loose nanofiltration hollow fiber membranes for treating textile wastewater[J]. Journal of Water Process Engineering, 2022, 46: 102579. |
120 | KARAMI Pooria, KHORSHIDI Behnam, MCGREGOR Mick, et al. Thermally stable thin film composite polymeric membranes for water treatment: A review[J]. Journal of Cleaner Production, 2020, 250: 119447. |
121 | CHEN Mingxing, XIAO Changfa, WANG Chun, et al. Preparation and characterization of a novel thermally stable thin film composite nanofiltration membrane with poly (m-phenyleneisophthalamide) (PMIA) substrate[J]. Journal of Membrane Science, 2018, 550: 36-44. |
122 | YANG Shanshan, LI Honghai, ZHANG Xia, et al. Amine-functionalized ZIF-8 nanoparticles as interlayer for the improvement of the separation performance of organic solvent nanofiltration (OSN) membrane[J]. Journal of Membrane Science, 2020, 614: 118433. |
123 | LAI Xing, WANG Chun, WANG Liming, et al. A novel PPTA/PPy composite organic solvent nanofiltration (OSN) membrane prepared by chemical vapor deposition for organic dye wastewater treatment[J]. Journal of Water Process Engineering, 2022, 45: 102533. |
124 | ZONG Yue, ZHANG Ruijun, GAO Shanshan, et al. Anti-drying nanofiltration (NF) membranes constructed on PTFE microfiltration (MF) substrate via novel interfacial polymerization[J]. Journal of Membrane Science, 2021, 638: 119721. |
125 | ZHANG Yuxin, SU Kunmei, ZHANG Maliang, et al. Polydopamine-modified HKUST-1 as nanofiller of PPS@PA membrane with well improved desalination performance[J]. Polymer, 2022, 253: 124988. |
126 | KHAN Sadaf Bashir, IRFAN Syed, LAM Su Shiung, et al. 3D printed nanofiltration membrane technology for waste water distillation[J]. Journal of Water Process Engineering, 2022, 49: 102958. |
[1] | WANG Jiaqing, SONG Guangwei, LI Qiang, GUO Shuaicheng, DAI Qingli. Rubber-concrete interface modification method and performance enhancement path [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 328-343. |
[2] | CHEN Chongming, CHEN Qiu, GONG Yunqian, CHE Kai, YU Jinxing, SUN Nannan. Research progresses on zeolite-based CO2 adsorbents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 411-419. |
[3] | ZHU Jie, JIN Jing, DING Zhenghao, YANG Huipan, HOU Fengxiao. Modification of CaSO4 oxygen carrier by Zhundong coal ash in chemical looping gasification and its mechanism [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4628-4635. |
[4] | WANG Jingang, ZHANG Jianbo, TANG Xuejiao, LIU Jinpeng, JU Meiting. Research progress on modification of Cu-SSZ-13 catalyst for denitration of automobile exhaust gas [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4636-4648. |
[5] | GAO Yanjing. Analysis of international research trend of single-atom catalysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4667-4676. |
[6] | LI Xuejia, LI Peng, LI Zhixia, JIN Dunshang, GUO Qiang, SONG Xufeng, SONG Peng, PENG Yuelian. Experimental comparation on anti-scaling and anti-wetting ability of hydrophilic and hydrophobic modified membranes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4458-4464. |
[7] | CHEN Junjun, FEI Chang’en, DUAN Jintang, GU Xueping, FENG Lianfang, ZHANG Cailiang. Research progress on chemical modification of polyether ether ketone for the high bioactivity [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4015-4028. |
[8] | LI Runlei, WANG Ziyan, WANG Zhimiao, LI Fang, XUE Wei, ZHAO Xinqiang, WANG Yanji. Efficient catalytic performance of CuO-CeO2/TiO2 for CO oxidation at low-temperature [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4264-4274. |
[9] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
[10] | YU Junnan, YU Jianfeng, CHENG Yang, QI Yibo, HUA Chunjian, JIANG Yi. Performance prediction of variable-width microfluidic concentration gradient chips by deep learning [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3383-3393. |
[11] | CHU Tiantian, LIU Runzhu, DU Gaohua, MA Jiahao, ZHANG Xiao’a, WANG Chengzhong, ZHANG Junying. Preparation and chemical degradability of organoguanidine-catalyzed dehydrogenation type RTV silicone rubbers [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3664-3673. |
[12] | TAN Lipeng, SHEN Jun, WANG Yugao, LIU Gang, XU Qingbai. Research progress on blending modification of coal tar pitch and petroleum asphalt [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3749-3759. |
[13] | YANG Jiatian, TANG Jinming, LIANG Zirong, LI Yinhong, HU Huayu, CHEN Yuan. Preparation and application of novel starch-based super absorbent polymer dust suppressant [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3187-3196. |
[14] | CHEN Yixin, ZHEN Yaoyao, CHEN Ruihao, WU Jiwei, PAN Limei, YAO Chong, LUO Jie, LU Chunshan, FENG Feng, WANG Qingtao, ZHANG Qunfeng, LI Xiaonian. Preparation of platinum based nanocatalysts and their recent progress in hydrogenation [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2904-2915. |
[15] | YIN Chengyang, HOU Ming, YANG Shuang, MAO Di, LIU Junyan. Research progress in transition metals modified Cu-SSZ-13 zeolite denitration catalysts [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2963-2974. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |