Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (9): 4974-4983.DOI: 10.16085/j.issn.1000-6613.2022-1955
• Resources and environmental engineering • Previous Articles Next Articles
LI You(), WU Yue, ZHONG Yu, LIN Qixuan, REN Junli()
Received:
2022-10-19
Revised:
2022-12-20
Online:
2023-09-28
Published:
2023-09-15
Contact:
REN Junli
通讯作者:
任俊莉
作者简介:
李由(1999—),男,硕士研究生,研究方向为生物质预处理。E-mail:202120129546@mail.scut.edu.cn。
基金资助:
CLC Number:
LI You, WU Yue, ZHONG Yu, LIN Qixuan, REN Junli. Pretreatment of wheat straw with acidic molten salt hydrate for xylose production and its effect on enzymatic hydrolysis efficiency[J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4974-4983.
李由, 吴越, 钟禹, 林琦璇, 任俊莉. 酸性熔盐水合物预处理麦秆高效制备木糖及其对酶解效率的影响[J]. 化工进展, 2023, 42(9): 4974-4983.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-1955
样品名称 | 固液比 | 质量收率 /% | 残渣组成/% | ||
---|---|---|---|---|---|
纤维素 | 半纤维素 | 木质素 | |||
脱蜡后原料 | — | — | 36.49 | 23.13 | 20.58 |
熔盐处理后残渣 | 1∶10 | 86.77 | 40.34 | 21.93 | 23.67 |
稀酸处理后残渣 | 1∶10 | 85.34 | 43.25 | 19.09 | 24.95 |
酸性熔盐处理后残渣 | 1∶5 | 73.94 | 52.26 | 6.81 | 27.97 |
1∶10 | 68.26 | 53.27 | 3.24 | 33.94 | |
1∶15 | 67.82 | 53.91 | 3.12 | 34.61 |
样品名称 | 固液比 | 质量收率 /% | 残渣组成/% | ||
---|---|---|---|---|---|
纤维素 | 半纤维素 | 木质素 | |||
脱蜡后原料 | — | — | 36.49 | 23.13 | 20.58 |
熔盐处理后残渣 | 1∶10 | 86.77 | 40.34 | 21.93 | 23.67 |
稀酸处理后残渣 | 1∶10 | 85.34 | 43.25 | 19.09 | 24.95 |
酸性熔盐处理后残渣 | 1∶5 | 73.94 | 52.26 | 6.81 | 27.97 |
1∶10 | 68.26 | 53.27 | 3.24 | 33.94 | |
1∶15 | 67.82 | 53.91 | 3.12 | 34.61 |
来源 | 总和 | 自由度 | 均方 | F 值 | P值 | 显著性 |
---|---|---|---|---|---|---|
模型 | 1384.69 | 9 | 153.85 | 5.97 | 0.0140 | 显著 |
A | 40.91 | 1 | 40.91 | 1.59 | 0.2482 | |
B | 735.94 | 1 | 735.94 | 28.55 | 0.0011 | |
C | 236.10 | 1 | 236.10 | 9.16 | 0.0192 | |
AB | 2.74 | 1 | 2.74 | 0.11 | 0.7540 | |
AC | 1.08 | 1 | 0.000 | 0.042 | 0.8435 | |
BC | 1.72 | 1 | 0.000 | 0.067 | 0.8038 | |
A2 | 131.47 | 1 | 131.47 | 5.10 | 0.0585 | |
B2 | 61.05 | 1 | 61.05 | 2.37 | 0.1677 | |
C2 | 136.57 | 1 | 136.57 | 5.30 | 0.0549 | |
剩余量 | 180.47 | 7 | 25.78 | |||
失拟 | 144.77 | 3 | 48.26 | 5.41 | 0.0683 | 不显著 |
纯误差 | 35.70 | 4 | 8.92 | |||
总和 | 1565.16 | 16 |
来源 | 总和 | 自由度 | 均方 | F 值 | P值 | 显著性 |
---|---|---|---|---|---|---|
模型 | 1384.69 | 9 | 153.85 | 5.97 | 0.0140 | 显著 |
A | 40.91 | 1 | 40.91 | 1.59 | 0.2482 | |
B | 735.94 | 1 | 735.94 | 28.55 | 0.0011 | |
C | 236.10 | 1 | 236.10 | 9.16 | 0.0192 | |
AB | 2.74 | 1 | 2.74 | 0.11 | 0.7540 | |
AC | 1.08 | 1 | 0.000 | 0.042 | 0.8435 | |
BC | 1.72 | 1 | 0.000 | 0.067 | 0.8038 | |
A2 | 131.47 | 1 | 131.47 | 5.10 | 0.0585 | |
B2 | 61.05 | 1 | 61.05 | 2.37 | 0.1677 | |
C2 | 136.57 | 1 | 136.57 | 5.30 | 0.0549 | |
剩余量 | 180.47 | 7 | 25.78 | |||
失拟 | 144.77 | 3 | 48.26 | 5.41 | 0.0683 | 不显著 |
纯误差 | 35.70 | 4 | 8.92 | |||
总和 | 1565.16 | 16 |
木糖得率/% | 相对误差/% | |
---|---|---|
实际值 | 预测值 | |
90.05 | 91.91 | 2.02 |
90.85 | 91.91 | 1.15 |
89.76 | 91.91 | 2.34 |
90.34 | 91.91 | 1.71 |
89.82 | 91.91 | 2.27 |
木糖得率/% | 相对误差/% | |
---|---|---|
实际值 | 预测值 | |
90.05 | 91.91 | 2.02 |
90.85 | 91.91 | 1.15 |
89.76 | 91.91 | 2.34 |
90.34 | 91.91 | 1.71 |
89.82 | 91.91 | 2.27 |
生物质 | 溶剂 | 葡萄糖得率 /% | 木糖得率 /% | 阿拉伯糖得率 /% |
---|---|---|---|---|
小麦秸秆 | f-ZnCl2 | 4.58 | 90.61 | 87.96 |
r-ZnCl2-1 | 4.32 | 90.28 | 87.72 | |
r-ZnCl2-2 | 4.18 | 89.45 | 87.55 | |
r-ZnCl2-3 | 4.07 | 88.23 | 86.93 | |
r-ZnCl2-4 | 3.95 | 88.01 | 86.01 | |
r-ZnCl2-5 | 3.75 | 87.69 | 85.72 |
生物质 | 溶剂 | 葡萄糖得率 /% | 木糖得率 /% | 阿拉伯糖得率 /% |
---|---|---|---|---|
小麦秸秆 | f-ZnCl2 | 4.58 | 90.61 | 87.96 |
r-ZnCl2-1 | 4.32 | 90.28 | 87.72 | |
r-ZnCl2-2 | 4.18 | 89.45 | 87.55 | |
r-ZnCl2-3 | 4.07 | 88.23 | 86.93 | |
r-ZnCl2-4 | 3.95 | 88.01 | 86.01 | |
r-ZnCl2-5 | 3.75 | 87.69 | 85.72 |
1 | WANG Wei, LEE Duu-Jong. Lignocellulosic biomass pretreatment by deep eutectic solvents on lignin extraction and saccharification enhancement: A review[J]. Bioresource Technology, 2021, 339: 125587. |
2 | HUANG Chen, WU Xinxing, HUANG Yang, et al. Prewashing enhances the liquid hot water pretreatment efficiency of waste wheat straw with high free ash content[J]. Bioresource Technology, 2016, 219: 583-588. |
3 | SHI Suan, GUAN Wenjian, KANG Li, et al. Reaction kinetic model of dilute acid-catalyzed hemicellulose hydrolysis of corn stover under high-solid conditions[J]. Industrial & Engineering Chemistry Research, 2017, 56(39): 10990-10997. |
4 | WU Changyan, CHEN Wei, ZHONG Linxin, et al. Conversion of xylose into furfural using lignosulfonic acid as catalyst in ionic liquid[J]. Journal of Agricultural and Food Chemistry, 2014, 62(30): 7430-7435. |
5 | CHEN Yanli. Development and application of co-culture for ethanol production by co-fermentation of glucose and xylose: A systematic review[J]. Journal of Industrial Microbiology & Biotechnology, 2011, 38(5): 581-597. |
6 | OUYANG Jia, HE Wenqiang, LI Qingming, et al. Separation of lignocellulose and preparation of xylose from miscanthus lutarioriparius with a formic acid method[J]. Applied Sciences, 2022, 12(3): 1432. |
7 | LUO Yiping, LI Dong, LI Ruiling, et al. Roles of water and aluminum sulfate for selective dissolution and utilization of hemicellulose to develop sustainable corn stover-based biorefinery[J]. Renewable and Sustainable Energy Reviews, 2020, 122: 109724. |
8 | JI Xingxiang, MA Hao, TIAN Zhongjian, et al. Production of xylose from diluted sulfuric acid hydrolysis of wheat straw[J]. Bioresources, 2017, 12(4): 7084-7095. |
9 | ZHENG Jun, CHOO Kim, REHMANN Lars. Xylose removal from lignocellulosic biomass via a twin-screw extruder: The effects of screw configurations and operating conditions[J]. Biomass and Bioenergy, 2016, 88: 10-16. |
10 | LOOW Yu Loong, WU Ta Yeong, YANG Ge Hoa, et al. Deep eutectic solvent and inorganic salt pretreatment of lignocellulosic biomass for improving xylose recovery[J]. Bioresource Technology, 2018, 249: 818-825. |
11 | LOOW Yu Loong, WU Ta Yeong, TAN Khang Aik, et al. Recent advances in the application of inorganic salt pretreatment for transforming lignocellulosic biomass into reducing sugars[J]. Journal of Agricultural and Food Chemistry, 2015, 63(38): 8349-8363. |
12 | BI Zhihao, LAI Bin, ZHAO Yi, et al. Fast disassembly of lignocellulosic biomass to lignin and sugars by molten salt hydrate at low temperature for overall biorefinery[J]. ACS Omega, 2018, 3(3): 2984-2993. |
13 | AWOSUSI Ayotunde A, AYENI Augustine, ADELEKE Rasheed, et al. Effect of water of crystallization on the dissolution efficiency of molten zinc chloride hydrate salts during the pre‐treatment of corncob biomass[J]. Journal of Chemical Technology & Biotechnology, 2017, 92(9): 2468-2476. |
14 | GUAN Mingzhao, LIU Qiyu, XIN Haosheng, et al. Enhanced glucose production from cellulose and corn stover hydrolysis by molten salt hydrates pretreatment[J]. Fuel Processing Technology, 2021, 215: 106739. |
15 | YOO Chang Geun. Pretreatment and fractionation of lignocellulosic biomass for production of biofuel and value-added products [D]. Ames: Iowa State University, 2012. |
16 | CAO N J, XU Q, CHEN L F. Xylan hydrolysis in zinc chloride solution[J]. Applied Biochemistry and Biotechnology, 1995, 51(1): 97-104. |
17 | WHEELER David L, BARRETT Tanya, BENSON Dennis A, et al. Database resources of the national center for biotechnology information[J]. Nucleic Acids Research, 2006, 33(S1): D5-D12. |
18 | CHEN Ming, ZHAO Jing, XIA Liming. Enzymatic hydrolysis of maize straw polysaccharides for the production of reducing sugars[J]. Carbohydrate Polymers, 2008, 71(3): 411-415. |
19 | WANG Lingna, MUHAMMED Mamoun. Synthesis of zinc oxide nanoparticles with controlled morphology[J]. Journal of Materials Chemistry, 1999, 9(11): 2871-2878. |
20 | SHAHBAZI Parvaneh, BEHZAD Tayebeh, HEIDARIAN Pejman. Isolation of cellulose nanofibers from poplar wood and wheat straw: Optimization of bleaching step parameters in a chemo-mechanical process by experimental design[J]. Wood Science and Technology, 2017, 51(5): 1173-1187. |
21 | 张圆圆, 孟永斌, 张琳, 等. 响应面法优化微波辅助水蒸气蒸馏法提取油樟精油工艺[J]. 化工进展, 2020, 39(S2): 291-299. |
ZHANG Yuanyuan, MENG Yongbin, ZHANG Lin, et al. Optimization of microwave-assisted steam distillation extraction of Cinnamomum longepaniculatum essential oil by response surface methodology[J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 291-299 | |
22 | ZHANG Hongdan, WU Shubin. Efficient sugar release by acetic acid ethanol-based organosolv pretreatment and enzymatic saccharification[J]. Journal of Agricultural and Food Chemistry, 2014, 62(48): 11681-11687. |
23 | SURI Kanchan, SINGH Balwinder, KAUR Amritpal, et al. Influence of dry air and infrared pre-treatments on oxidative stability, Maillard reaction products and other chemical properties of linseed (Linum usitatissimum L.) oil[J]. Journal of Food Science and Technology, 2021, 59(1): 366-376. |
24 | LIAO Cuiping, WU Chuangzhi, HUANG Haitao. Chemical elemental characteristics of biomass fuels in China[J]. Biomass and Bioenergy, 2004, 27(2): 119-130. |
25 | LU Xinkun, SHEN Xinyuan. Solubility of bacteria cellulose in zinc chloride aqueous solutions[J]. Carbohydrate Polymers, 2011, 86(1): 239-244. |
26 | Sanghamitra SEN, MARTIN James D, ARGYROPOULOS Dimitris S. Review of cellulose non-derivatizing solvent interactions with emphasis on activity in inorganic molten salt hydrates[J]. ACS Sustainable Chemistry & Engineering, 2013, 1(8): 858-870. |
27 | XIE Ruyue, ZHU Ying, LI Junbao, et al. A new microcomputed-tomography-based approach for visualizing microstructure changes of corn stalk pretreated with dilute sulfuric acid[J]. Energy & Fuels, 2019, 33(10): 9895-9903. |
28 | RODRIGUEZ Quiroz Natalia, PADMANATHAN Arul M D, MUSHRIF Samir H, et al. Understanding acidity of molten salt hydrate media for cellulose hydrolysis by combining kinetic studies, electrolyte solution modeling, molecular dynamics simulations, and 13C NMR experiments[J]. ACS Catalysis, 2019, 9(11): 10551-10561. |
29 | CAO N J, XU Q, CHEN L F. Acid hydrolysis of cellulose in zinc chloride solution[J]. Applied Biochemistry and Biotechnology, 1995, 51(1): 21-28. |
30 | JIN Ci, BAO Jie. Lysine production by dry biorefining of wheat straw and cofermentation of Corynebacterium glutamicum [J]. Journal of Agricultural and Food Chemistry, 2021, 69(6): 1900-1906. |
31 | DOMINIC Onukwuli Okechukwu, CHIKAODILI Anadebe Valentine, SANDRA Okafor Chizoba. Optimum prediction for inhibition efficiency of Sapium ellipticum leaf extract as corrosion inhibitor of aluminum alloy (AA3003) in hydrochloric acid solution using electrochemical impedance spectroscopy and response surface methodology[J]. Bulletin of the Chemical Society of Ethiopia, 2020, 34(1): 175-191. |
32 | XU Huanfei, CHE Xinpeng, DING Yu, et al. Effect of crystallinity on pretreatment and enzymatic hydrolysis of lignocellulosic biomass based on multivariate analysis[J]. Bioresource Technology, 2019, 279: 271-280. |
33 | XU Qinqin, ZHAO Mengjiao, YU Zhenzi, et al. Enhancing enzymatic hydrolysis of corn cob, corn stover and sorghum stalk by dilute aqueous ammonia combined with ultrasonic pretreatment[J]. Industrial Crops and Products, 2017, 109: 220-226. |
34 | WANG Zhinan, HOU Xianfeng, SUN Jin, et al. Comparison of ultrasound-assisted ionic liquid and alkaline pretreatment of Eucalyptus for enhancing enzymatic saccharification[J]. Bioresource Technology, 2018, 254: 145-150. |
35 | ANDERSEN Natalija, JOHANSEN Katja S, MICHELSEN Michael, et al. Hydrolysis of cellulose using mono-component enzymes shows synergy during hydrolysis of phosphoric acid swollen cellulose (PASC), but competition on Avicel[J]. Enzyme and Microbial Technology, 2008, 42(4): 362-370. |
36 | BU Lingxi, TANG Yong, GAO Yuxia, et al. Comparative characterization of milled wood lignin from furfural residues and corncob[J]. Chemical Engineering Journal, 2011, 175: 176-184. |
37 | LEE Christopher M, KUBICKI James D, FAN Bingxin, et al. Hydrogen-bonding network and OH stretch vibration of cellulose: Comparison of computational modeling with polarized IR and SFG spectra[J]. The Journal of Physical Chemistry B, 2015, 119(49): 15138-15149. |
38 | XU Junli, YAO Xiaoqian, XIN Jiayu, et al. An effective two‐step ionic liquids method for cornstalk pretreatment[J]. Journal of Chemical Technology & Biotechnology, 2015, 90(11): 2057-2065. |
39 | JEONG So Yeon, Bonwook KOO, LEE Jae Won. Structural changes in biomass (yellow poplar and empty fruit bunch) during hydrothermal and oxalic acid pretreatments and their effects on enzymatic hydrolysis efficiency[J]. Industrial Crops and Products, 2022, 178: 114569. |
40 | MAO Zhanxin, WANG Minjie, LIU Lu, et al. ZnCl2 salt facilitated preparation of FeNC: Enhancing the content of active species and their exposure for highly-efficient oxygen reduction reaction[J]. Chinese Journal of Catalysis, 2020, 41(5): 799-806. |
41 | KIM Tae Hoon, Kyeong Keun OH, Hyun Jin RYU, et al. Hydrolysis of hemicellulose from barley straw and enhanced enzymatic saccharification of cellulose using acidified zinc chloride[J]. Renewable Energy, 2014, 65: 56-63. |
42 | LUO Lianxin, YUAN Xiaojun, ZHANG Sheng, et al. Effect of pretreatments on the enzymatic hydrolysis of high-yield bamboo chemo-mechanical pulp by changing the surface lignin content[J]. Polymers, 2021, 13(5): 787. |
[1] | ZHANG Lele, QIAN Yundong, ZHU Huatong, FENG Silong, YANG Xiuna, YU Ying, YANG Qiang, LU Hao. Study on optimization limits of dehydration and desalination pretreatment of hydrogenated coal tar [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2298-2305. |
[2] | MA Jingwen, NIU Jiayu, LI Xiufen. Promotion technology of aerobic compost ripening [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2744-2750. |
[3] | WANG Chuandong, ZHANG Junqi, LIU Dingyuan, MA Yuanyuan, LI Feng, SONG Hao. Co-utilization of xylose and glucose to produce chemicals by microorganisms [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 354-372. |
[4] | HAN Mingyang, QIAO Hui, FU Jiaming, MA Zewen, WANG Yan, OUYANG Jia. Research progress of non-aqueous solvents on the pretreatment of lignocellulose [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4086-4097. |
[5] | LIU Yang, YE Xiaomei, WANG Chengcheng, JIA Zhaoyan, DU Jing, KONG Xiangping, XI Yonglan. Optimization of anaerobic co-digestion process of rural organic household waste with other substrates [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2770-2777. |
[6] | XIE Xianli, LIU Yunyun, YU Qiang, ZHANG Yu, ZHANG Rongqing, QIU Yuxin. Improving enzymatic hydrolysis effect of herb residue by deep eutectic solvent pretreatment [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1349-1356. |
[7] | RUAN Min, SUN Yutong, HUANG Zhongliang, LI Hui, ZHANG Xuan, WU Xikai, ZHAO Cheng, YAO Shirong, ZHANG Shuanbao, ZHANG Wei, HUANG Jing. Energy economy evaluation of sludge pretreatment-anaerobic digestion system [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1503-1516. |
[8] | WANG Na, SONG Xiulan, ZAN Botao. Synthesis of PHA by mixed microorganisms using simulative hydrolysate liquid from the excess sludge by APG combined with FNA pretreatment [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 1017-1024. |
[9] | WANG Yilin, LI Shijie. Effect of hydrochloric acid pretreatment on the electrochemical properties of enteromorpha-based activated carbon [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6454-6460. |
[10] | LIU Qianjing, CHEN Xiaomiao, WANG Zhi, SHI Jiping, LI Baoguo, LIU Li. Deep eutectic solvent pretreatment of poplar hydrolysis residue for lignin separation [J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5612-5618. |
[11] | ZHANG Qiang, CHEN Shiyang. Effect of oxygen-assisted hydrothermal pretreatment on fermentation of corn stover to ethanol [J]. Chemical Industry and Engineering Progress, 2022, 41(1): 161-165. |
[12] | NIE Yudong, LI Jin, ZHANG Xianming. Research progress on membrane fouling and its pretreatment technology in water treatment [J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2278-2289. |
[13] | DONG Yanmei, AN Yanxia, MA Yangyang, ZHANG Jian, LI Mengqin. Research progress on deep eutectic solvent of lignocellulose pretreatment [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1594-1603. |
[14] | Pengkun GUO, Pan LI, Lin DENG, Chun CHANG, Guizhuan XU, Xiaohua SHI, Shuqi FANG. Preparation of methyl levulinate by pretreatment of wheat straw with alkali [J]. Chemical Industry and Engineering Progress, 2021, 40(2): 1106-1113. |
[15] | Jinxue WANG, Liming SHAO, Fan LYU, Hua ZHANG, Pinjing HE. Monitoring and analysis methods for malodor generated during the collection, transportation, treatment and disposal of domestic waste [J]. Chemical Industry and Engineering Progress, 2021, 40(2): 1058-1068. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |