Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (2): 1058-1068.DOI: 10.16085/j.issn.1000-6613.2020-0748
• Resources and environmental engineering • Previous Articles Next Articles
Jinxue WANG1,2(), Liming SHAO1,2, Fan LYU1,2, Hua ZHANG1,2, Pinjing HE1,2()
Received:
2020-05-06
Revised:
2020-07-14
Online:
2021-02-09
Published:
2021-02-05
Contact:
Pinjing HE
王锦雪1,2(), 邵立明1,2, 吕凡1,2, 章骅1,2, 何品晶1,2()
通讯作者:
何品晶
作者简介:
王锦雪(1996—),女,硕士研究生,研究方向为固体废弃物处理与资源化。E-mail:基金资助:
CLC Number:
Jinxue WANG, Liming SHAO, Fan LYU, Hua ZHANG, Pinjing HE. Monitoring and analysis methods for malodor generated during the collection, transportation, treatment and disposal of domestic waste[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 1058-1068.
王锦雪, 邵立明, 吕凡, 章骅, 何品晶. 生活垃圾收运及处理处置过程中产生恶臭的监测和分析方法[J]. 化工进展, 2021, 40(2): 1058-1068.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-0748
释放源 类型 | 设施类型 (处理能力) | 采样点位及采样高度 | 采样时间/平行样品个数 | 采样方式 | 参考 文献 | |
---|---|---|---|---|---|---|
有组织释放源 | 转运站(设有排气筒)(3000t/d) | 排气筒采样孔采样,采样管口放置在排气筒直径2/3处 | 2016年6月至2017年5月;每月选择1天;上午9—12点;每隔20min采集1次,共采4次 | 采样罐 | [ | |
无组织释放源 | ||||||
体源 | 垃圾箱房 (0.3~1.2t/d) | 紧靠垃圾桶上方 | 分别在2011年10月、2012年1月、2012年8月采样; 采集2个平行样 | Tedlar气袋、吸附管、衍生管 | [ | |
转运码头(中转站) (100~3400t/d) | 散装垃圾装卸点、集装箱垃圾装卸点,距离操作点1m处 | Tedlar气袋、吸附管、衍生管 | [19] | |||
转运码头(中转站) (100~3400t/d) | 垃圾倾倒及储存单元、转运车停靠点、转运站内边界及站外边界 | 未提及 | Tedlar气袋、采样罐 | [9,20] | ||
堆肥厂 (200~2000t/d) | 垃圾倾倒区、机械作业区、生物处理区、堆肥产品存储区、厂界及背景点;距离地面1.5m/静态箱在堆体表面采样 | 2016年3月23—25日;上午10—12点采集1个,下午13—15点采集1个 (考虑作业人员暴露风险) | 吸附管、聚酯袋 | [8] | ||
堆肥厂 (200~2000t/d) 厌氧消化厂 (200t/d) | 垃圾倾倒区、机械作业区、生物处理区、堆肥产品存储区、厂界及背景点;距离地面1.5m/静态箱在堆体表面采样 | 2011年12月;工作时间8—14点 | Tedlar气袋、检定管 | [21] | ||
垃圾进口、厌氧发酵残余物传送带起始端、终端、残余物堆积仓 | 2013年7月10日上午9点、中午12点、下午17点 | Tedlar气袋、检定管、吸附管 | [22] | |||
2012年秋季采样;不同时段采样2次,每次采集2个平行样品 | SOC-01采样系统 | [23] | ||||
2012年4月至2013年1月;每个季度选1天;上午9—12点采样,采集2个平行样品 | 吸附管、溶液吸收、 Tedlar气袋 | [ | ||||
焚烧厂 | 垃圾储仓的下风向距离垃圾5m处; 采样高度距地面1.2m | 2h采1次,共4次,取最大值 | 采样罐 | [ | ||
面源 | 垃圾填埋场 (200~104 t/d) | 填埋作业面 | 2013年8月和11月;10点、14点、18点、22点、2点、6点采样 | SOC-01采样系统 | [ | |
填埋作业面 | 分别在2016年4月、2016年8月、2016年11月、2017年1月采样 | 静态箱 | [26] | |||
填埋作业面 | 2016年9月、10月、11月;2017年2月、4月;选取其中1天; 每隔1h采样1次,持续4h | 静态箱 | [27] | |||
填埋作业面 | 2014年5月至2015年1月采样 | 风洞系统 | [28] | |||
填埋作业面 | 2018年7—9月,每个月采集2次,采集时间跨越8—18点 | 风洞系统 | [29] | |||
上风向背景点、填埋作业面、填埋气排放口、平整压实区、覆膜覆土区、渗滤液收集处理区、办公区、厂界;距离作业面/功能区地面高1.5m处 | 2012年3月到2013年1月,每个季节选取1天;分别在10点、14点、18点、23点、3点采样 | SOC-01采样系统 | [30] | |||
填埋作业面 | 上午7点至下午19点,每1h采集1次;下午19点至第二天上午7点,每2h采集1次 | SOC-01采样系统 | [31] | |||
上风向背景点、平整压实区、覆土和覆膜完成区域、下风向 | 2013年7月10日上午9点、中午12点,下午17点 | 检定管、Tedlar气袋吸附管 | [22] | |||
新鲜垃圾倾倒区、填埋区、填埋气排放口、下风向;采样高度为距离地面1.5m | 2008年4月3日、7月22日;中午11—13点 | SOC-01采样系统 | [32] | |||
垃圾倾倒区、临时覆膜区、永久覆膜区、渗滤液收集池、办公区、填埋场边界 | 2013—2014年不同季节选取1天;工作时间采样,2个平行样品 (考虑作业人员的暴露) | 溶液吸收、 Tedlar气袋 | [33] | |||
作业面、封场区域填埋气收集井、渗滤液存储池、渗滤液处理池、污泥排放区、污泥处置作业面、污泥晒干区、污泥填埋区;距离选定的功能区地面1.5m | 2个平行样品 | DNPH衍生管、 检定管、SPME纤维 | [34] | |||
类点源 | 有机废物处理厂 (730t/d) | 结合风玫瑰图,在主导风向上分别距离处理设施300m、600m、900m布点采样 | 未提及 | 合成碳(硅胶747)吸附管、2,4-二硝基苯肼覆膜的硅胶管 | [ | |
天津市城区 | 网格布点法,在约173km2内布设26个采样点 | 2011—2012年4个季节分别采样 | 不锈钢采样罐 | [18] |
释放源 类型 | 设施类型 (处理能力) | 采样点位及采样高度 | 采样时间/平行样品个数 | 采样方式 | 参考 文献 | |
---|---|---|---|---|---|---|
有组织释放源 | 转运站(设有排气筒)(3000t/d) | 排气筒采样孔采样,采样管口放置在排气筒直径2/3处 | 2016年6月至2017年5月;每月选择1天;上午9—12点;每隔20min采集1次,共采4次 | 采样罐 | [ | |
无组织释放源 | ||||||
体源 | 垃圾箱房 (0.3~1.2t/d) | 紧靠垃圾桶上方 | 分别在2011年10月、2012年1月、2012年8月采样; 采集2个平行样 | Tedlar气袋、吸附管、衍生管 | [ | |
转运码头(中转站) (100~3400t/d) | 散装垃圾装卸点、集装箱垃圾装卸点,距离操作点1m处 | Tedlar气袋、吸附管、衍生管 | [19] | |||
转运码头(中转站) (100~3400t/d) | 垃圾倾倒及储存单元、转运车停靠点、转运站内边界及站外边界 | 未提及 | Tedlar气袋、采样罐 | [9,20] | ||
堆肥厂 (200~2000t/d) | 垃圾倾倒区、机械作业区、生物处理区、堆肥产品存储区、厂界及背景点;距离地面1.5m/静态箱在堆体表面采样 | 2016年3月23—25日;上午10—12点采集1个,下午13—15点采集1个 (考虑作业人员暴露风险) | 吸附管、聚酯袋 | [8] | ||
堆肥厂 (200~2000t/d) 厌氧消化厂 (200t/d) | 垃圾倾倒区、机械作业区、生物处理区、堆肥产品存储区、厂界及背景点;距离地面1.5m/静态箱在堆体表面采样 | 2011年12月;工作时间8—14点 | Tedlar气袋、检定管 | [21] | ||
垃圾进口、厌氧发酵残余物传送带起始端、终端、残余物堆积仓 | 2013年7月10日上午9点、中午12点、下午17点 | Tedlar气袋、检定管、吸附管 | [22] | |||
2012年秋季采样;不同时段采样2次,每次采集2个平行样品 | SOC-01采样系统 | [23] | ||||
2012年4月至2013年1月;每个季度选1天;上午9—12点采样,采集2个平行样品 | 吸附管、溶液吸收、 Tedlar气袋 | [ | ||||
焚烧厂 | 垃圾储仓的下风向距离垃圾5m处; 采样高度距地面1.2m | 2h采1次,共4次,取最大值 | 采样罐 | [ | ||
面源 | 垃圾填埋场 (200~104 t/d) | 填埋作业面 | 2013年8月和11月;10点、14点、18点、22点、2点、6点采样 | SOC-01采样系统 | [ | |
填埋作业面 | 分别在2016年4月、2016年8月、2016年11月、2017年1月采样 | 静态箱 | [26] | |||
填埋作业面 | 2016年9月、10月、11月;2017年2月、4月;选取其中1天; 每隔1h采样1次,持续4h | 静态箱 | [27] | |||
填埋作业面 | 2014年5月至2015年1月采样 | 风洞系统 | [28] | |||
填埋作业面 | 2018年7—9月,每个月采集2次,采集时间跨越8—18点 | 风洞系统 | [29] | |||
上风向背景点、填埋作业面、填埋气排放口、平整压实区、覆膜覆土区、渗滤液收集处理区、办公区、厂界;距离作业面/功能区地面高1.5m处 | 2012年3月到2013年1月,每个季节选取1天;分别在10点、14点、18点、23点、3点采样 | SOC-01采样系统 | [30] | |||
填埋作业面 | 上午7点至下午19点,每1h采集1次;下午19点至第二天上午7点,每2h采集1次 | SOC-01采样系统 | [31] | |||
上风向背景点、平整压实区、覆土和覆膜完成区域、下风向 | 2013年7月10日上午9点、中午12点,下午17点 | 检定管、Tedlar气袋吸附管 | [22] | |||
新鲜垃圾倾倒区、填埋区、填埋气排放口、下风向;采样高度为距离地面1.5m | 2008年4月3日、7月22日;中午11—13点 | SOC-01采样系统 | [32] | |||
垃圾倾倒区、临时覆膜区、永久覆膜区、渗滤液收集池、办公区、填埋场边界 | 2013—2014年不同季节选取1天;工作时间采样,2个平行样品 (考虑作业人员的暴露) | 溶液吸收、 Tedlar气袋 | [33] | |||
作业面、封场区域填埋气收集井、渗滤液存储池、渗滤液处理池、污泥排放区、污泥处置作业面、污泥晒干区、污泥填埋区;距离选定的功能区地面1.5m | 2个平行样品 | DNPH衍生管、 检定管、SPME纤维 | [34] | |||
类点源 | 有机废物处理厂 (730t/d) | 结合风玫瑰图,在主导风向上分别距离处理设施300m、600m、900m布点采样 | 未提及 | 合成碳(硅胶747)吸附管、2,4-二硝基苯肼覆膜的硅胶管 | [ | |
天津市城区 | 网格布点法,在约173km2内布设26个采样点 | 2011—2012年4个季节分别采样 | 不锈钢采样罐 | [18] |
气袋种类 | 膜材料种类 | 优缺点及适用情况 | 参考文献 |
---|---|---|---|
含氟类 | |||
Tedlar(透明) | 聚氟乙烯膜(PVF)、聚氟丙烯膜 | 本底会散发乙苯、苯酚、N,N-二甲基乙酰胺, 不适用于浓度级别为ng/m3的物质分析,且采集小分子物质时样品不稳定 | [ |
Tedlar(黑色) | 内层为PVF, 外层为含有炭黑的PVF | 本底值较高,可用于采集对光线敏感的化合物 | [ |
Teflon | 氟化乙烯丙烯共聚物膜(FEP) | 本底值最低,气袋材料的惰性最高 气体稳定性比Tedlar和Nalophan高,推荐用于臭气浓度测定 | [ |
Kynar | 聚偏氟乙烯膜(PVDF) | 浓度级别为μg/m3时,建议在1d内分析完毕不适合储存酮类、烃类物质 | [ |
非含氟类 | |||
多层箔采样袋 | 铝箔、低密度聚乙烯、低密度聚丙烯 | 本底中低分子的杂质较多,本底值最高推荐用于小分子物质采样 | [ |
Nalophan | 聚对苯二甲酸乙二醇酯膜(PET) | 背景值比Tedlar低,水分子扩散渗透能力较强,2h相对湿度可以下降60% | [ |
气袋种类 | 膜材料种类 | 优缺点及适用情况 | 参考文献 |
---|---|---|---|
含氟类 | |||
Tedlar(透明) | 聚氟乙烯膜(PVF)、聚氟丙烯膜 | 本底会散发乙苯、苯酚、N,N-二甲基乙酰胺, 不适用于浓度级别为ng/m3的物质分析,且采集小分子物质时样品不稳定 | [ |
Tedlar(黑色) | 内层为PVF, 外层为含有炭黑的PVF | 本底值较高,可用于采集对光线敏感的化合物 | [ |
Teflon | 氟化乙烯丙烯共聚物膜(FEP) | 本底值最低,气袋材料的惰性最高 气体稳定性比Tedlar和Nalophan高,推荐用于臭气浓度测定 | [ |
Kynar | 聚偏氟乙烯膜(PVDF) | 浓度级别为μg/m3时,建议在1d内分析完毕不适合储存酮类、烃类物质 | [ |
非含氟类 | |||
多层箔采样袋 | 铝箔、低密度聚乙烯、低密度聚丙烯 | 本底中低分子的杂质较多,本底值最高推荐用于小分子物质采样 | [ |
Nalophan | 聚对苯二甲酸乙二醇酯膜(PET) | 背景值比Tedlar低,水分子扩散渗透能力较强,2h相对湿度可以下降60% | [ |
仪器类型 | 检测器 | 分析原理 | 分析物质 | 预浓缩 方法 | 气体体积、 检出限/定量限 | 参考 文献 |
---|---|---|---|---|---|---|
气相色谱[ | 氢火焰离子化 检测器(FID) | 氢火焰电离有机物产生微电流获得响应 | 含氮类:甲胺、二甲基酰胺、苯胺 | SPME | 检出限:0.01μg/m3 | [ |
VFAs类:乙酸、丙酸、丁酸、戊酸、丙烯酸、异戊酸 | SPME | 进样体积:50~500mL 定量限:50~2000μg/m3 | [ | |||
醇类:甲醇、乙醇、2-丙醇、正丁醇、2-丁醇、异丁醇、2-戊醇、3-戊醇 | 三级冷肼 | |||||
酮类:丙酮、丁酮、3-戊酮 | 三级冷肼 | |||||
苯类:苯、甲苯、乙苯、对二甲苯、间二甲苯 | 三级冷肼 | |||||
火焰/脉冲 | 化合物从激发态返回基态会发射特征光谱 | 含硫类:硫化氢、羰基硫、二氧化硫、 | 三级冷肼 | 进样体积:50~500mL | [ | |
火焰光度检测器(FPD/PFPD) | 二硫化碳、甲硫醇、乙硫醇、丙硫醇、甲硫醚、乙硫醚、二甲基二硫醚、二乙基二硫醚、二甲基三硫醚 | 定量限:50~2000μg/m3检出限:0.2μg/m3 | ||||
MS | — | 含硫类:甲硫醇、羰基硫、甲硫醚、二甲基二硫醚 | 三级冷肼 | 进样体积:400mL 检出限:0.2~2μg/m3 定量限:0~160μg/m3 | [ | |
含氮类:己内酰胺 | SPME | 检出限: 0.25~1.4μg/m3 | [ | |||
醇类:正己醇、正丁醇、正丙醇、仲丁醇、异戊醇、苯甲醇、异丙醇 | SPME | |||||
醛类:辛醛、异戊醛、庚醛、己醛、壬醛、癸醛、苯甲醛、二甲基正丁醛 | SPME | |||||
酯类:乙酸乙酯、2-甲基-2-丙烯酸甲酯、丁酸乙酯、戊酸乙酯、丁酸丁酯、丁酸甲酯、丁酸丙酯、乙酸丁酯、己酸丁酯、己酸乙酯 | 三级冷肼、SPME | 进样体积:400mL 检出限:0.1~2μg/m3 | [ | |||
含卤素:二氯甲烷、氯仿、氯甲烷/1,2-二氯乙烷、氯仿、二氯甲烷 | 三级冷肼/吸附管 | 进样体积:400mL 检出限:0.2~2μg/m3 气体采集体积:360L 检出限:0.5~5μg/m3 | [ | |||
烷烃:戊烷、己烷、3-甲基庚烷、甲基环戊烷 | 三级冷肼 | 进样体积:400mL 检出限:0.2~2μg/m3 | [ | |||
烯烃:丙烯、正丁烯、柠檬烯、α-蒎烯、β-蒎烯/三氯乙烯、1,3-丁二烯、四氯乙烯/α-蒎烯、β-蒎烯、桧烯、β-月桂烯、Δ-3-蒈烯、水芹烯、萜品油烯 | 三级冷肼/吸附管/三级冷肼 | 进样体积:400mL 检出限:0.2~2μg/m3 气体采集体积:360L 检出限:0.1~3μg/m3 进样体积:250mL 检出限:20~80ng/m3 | [ | |||
苯类:苯、甲苯、间二甲苯 | 三级冷肼 | 进样体积:400mL 检出限:0.2~2μg/m3 | [ | |||
液相色谱[ | 紫外-可见光 检测器(UVD) | 样品在检测池中吸收紫外-可见光的能力大小 | 甲醛 | DNPH 衍生管 | 气体采集体积:120L 检出限:0.5μg/m3 | [ |
二极管阵列 检测器(DAD) | 复色光选择性吸收后进入单色器,二极管阵列装置将光强度转变为电信号 | 甲醛、乙醛、丙烯醛、丙醛、丁烯醛、丁醛、戊醛、异戊醛、己醛、苯甲醛、邻甲基苯甲醛 | DNPH 衍生管 | 气体采集体积:30L 用5mL乙腈洗脱 进样体积:25μL 检出限:50μg/m3 | [ | |
分光光度计 | — | 不同物质的吸收光谱不同 | 硫化氢、氨气 | 溶液吸收 | — | [ |
仪器类型 | 检测器 | 分析原理 | 分析物质 | 预浓缩 方法 | 气体体积、 检出限/定量限 | 参考 文献 |
---|---|---|---|---|---|---|
气相色谱[ | 氢火焰离子化 检测器(FID) | 氢火焰电离有机物产生微电流获得响应 | 含氮类:甲胺、二甲基酰胺、苯胺 | SPME | 检出限:0.01μg/m3 | [ |
VFAs类:乙酸、丙酸、丁酸、戊酸、丙烯酸、异戊酸 | SPME | 进样体积:50~500mL 定量限:50~2000μg/m3 | [ | |||
醇类:甲醇、乙醇、2-丙醇、正丁醇、2-丁醇、异丁醇、2-戊醇、3-戊醇 | 三级冷肼 | |||||
酮类:丙酮、丁酮、3-戊酮 | 三级冷肼 | |||||
苯类:苯、甲苯、乙苯、对二甲苯、间二甲苯 | 三级冷肼 | |||||
火焰/脉冲 | 化合物从激发态返回基态会发射特征光谱 | 含硫类:硫化氢、羰基硫、二氧化硫、 | 三级冷肼 | 进样体积:50~500mL | [ | |
火焰光度检测器(FPD/PFPD) | 二硫化碳、甲硫醇、乙硫醇、丙硫醇、甲硫醚、乙硫醚、二甲基二硫醚、二乙基二硫醚、二甲基三硫醚 | 定量限:50~2000μg/m3检出限:0.2μg/m3 | ||||
MS | — | 含硫类:甲硫醇、羰基硫、甲硫醚、二甲基二硫醚 | 三级冷肼 | 进样体积:400mL 检出限:0.2~2μg/m3 定量限:0~160μg/m3 | [ | |
含氮类:己内酰胺 | SPME | 检出限: 0.25~1.4μg/m3 | [ | |||
醇类:正己醇、正丁醇、正丙醇、仲丁醇、异戊醇、苯甲醇、异丙醇 | SPME | |||||
醛类:辛醛、异戊醛、庚醛、己醛、壬醛、癸醛、苯甲醛、二甲基正丁醛 | SPME | |||||
酯类:乙酸乙酯、2-甲基-2-丙烯酸甲酯、丁酸乙酯、戊酸乙酯、丁酸丁酯、丁酸甲酯、丁酸丙酯、乙酸丁酯、己酸丁酯、己酸乙酯 | 三级冷肼、SPME | 进样体积:400mL 检出限:0.1~2μg/m3 | [ | |||
含卤素:二氯甲烷、氯仿、氯甲烷/1,2-二氯乙烷、氯仿、二氯甲烷 | 三级冷肼/吸附管 | 进样体积:400mL 检出限:0.2~2μg/m3 气体采集体积:360L 检出限:0.5~5μg/m3 | [ | |||
烷烃:戊烷、己烷、3-甲基庚烷、甲基环戊烷 | 三级冷肼 | 进样体积:400mL 检出限:0.2~2μg/m3 | [ | |||
烯烃:丙烯、正丁烯、柠檬烯、α-蒎烯、β-蒎烯/三氯乙烯、1,3-丁二烯、四氯乙烯/α-蒎烯、β-蒎烯、桧烯、β-月桂烯、Δ-3-蒈烯、水芹烯、萜品油烯 | 三级冷肼/吸附管/三级冷肼 | 进样体积:400mL 检出限:0.2~2μg/m3 气体采集体积:360L 检出限:0.1~3μg/m3 进样体积:250mL 检出限:20~80ng/m3 | [ | |||
苯类:苯、甲苯、间二甲苯 | 三级冷肼 | 进样体积:400mL 检出限:0.2~2μg/m3 | [ | |||
液相色谱[ | 紫外-可见光 检测器(UVD) | 样品在检测池中吸收紫外-可见光的能力大小 | 甲醛 | DNPH 衍生管 | 气体采集体积:120L 检出限:0.5μg/m3 | [ |
二极管阵列 检测器(DAD) | 复色光选择性吸收后进入单色器,二极管阵列装置将光强度转变为电信号 | 甲醛、乙醛、丙烯醛、丙醛、丁烯醛、丁醛、戊醛、异戊醛、己醛、苯甲醛、邻甲基苯甲醛 | DNPH 衍生管 | 气体采集体积:30L 用5mL乙腈洗脱 进样体积:25μL 检出限:50μg/m3 | [ | |
分光光度计 | — | 不同物质的吸收光谱不同 | 硫化氢、氨气 | 溶液吸收 | — | [ |
吸附材料 | 适用范围 |
---|---|
Tenax | 挥发性和半挥发性的有机化合物 |
Carbotrap B、Carbopack B | C5~C12等小分子 |
Carbotrap C、Carbopack C | C9~C30等大分子 |
Carboxen | 疏水性,可用于高湿环境、小分子化合物的采集 |
Carboxen/聚二甲基硅烷 | 通用性较强,多用于痕量及低分子量(Mw为30~225)化合物的捕集 |
聚二甲基硅烷/二乙烯基苯、二乙烯基苯/Carboxen/聚二甲基硅烷 | 胺类、硝基类、芳香族化合物(Mw为40~275) |
吸附材料 | 适用范围 |
---|---|
Tenax | 挥发性和半挥发性的有机化合物 |
Carbotrap B、Carbopack B | C5~C12等小分子 |
Carbotrap C、Carbopack C | C9~C30等大分子 |
Carboxen | 疏水性,可用于高湿环境、小分子化合物的采集 |
Carboxen/聚二甲基硅烷 | 通用性较强,多用于痕量及低分子量(Mw为30~225)化合物的捕集 |
聚二甲基硅烷/二乙烯基苯、二乙烯基苯/Carboxen/聚二甲基硅烷 | 胺类、硝基类、芳香族化合物(Mw为40~275) |
1 | 中华人民共和国住房和城乡建设部. 2018城乡建设统计年鉴 [EB/OL]. 22244246807343750.rar. |
Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Statistical yearbook of urban-rural development in 2018[EB/OL]. . | |
2 | GU Bingxian, JIANG Suqing, WANG Haikun, et al. Characterization, quantification and management of China’s municipal solid waste in spatiotemporal distributions: a review[J]. Waste Management, 2017, 61: 67-77. |
3 | YAO Xingzhi, MA Ruochan, LI Huajun, et al. Assessment of the major odor contributors and health risks of volatile compounds in three disposal technologies for municipal solid waste[J]. Waste Management, 2019, 91: 128-138. |
4 | SHI Xiaoxiao, ZHENG Guodi, SHAO Zhuze, et al. Effect of source-classified and mixed collection from residential household waste bins on the emission characteristics of volatile organic compounds[J]. Science of the Total Environment, 2020, 707: 135478. |
5 | HE Pinjing, DU Wanting, XU Xian, et al. Effect of biochemical composition on odor emission potential of biowaste during aerobic biodegradation[J]. Science of the Total Environment, 2020, 727: 138285. |
6 | 黄欣怡, 张珺婷, 王凡, 等. 餐厨垃圾资源化利用及其过程污染控制研究进展[J]. 化工进展, 2016, 35(9): 2945-2951. |
HUANG Xinyi, ZHANG Junting, WANG Fan, et al. Research progress in resource utilization of kitchen waste and its process pollution control[J]. Chemical Industry and Engineering Progress, 2016, 35(9): 2945-2951. | |
7 | TAN Haobo, ZHAO Yan, LING Yue, et al. Emission characteristics and variation of volatile odorous compounds in the initial decomposition stage of municipal solid waste[J]. Waste Management, 2017, 68: 677-687. |
8 | NIE Erqi, ZHENG Guodi, SHAO Zhuze, et al. Emission characteristics and health risk assessment of volatile organic compounds produced during municipal solid waste composting[J]. Waste Management, 2018, 79: 188-195. |
9 | GUO Hanwen, DUAN Zhenhan, ZHAO Yan, et al. Characteristics of volatile compound emission and odor pollution from municipal solid waste treating/disposal facilities of a city in Eastern China[J]. Environmental Science and Pollution Research, 2017, 24(22): 18383-18391. |
10 | HE Pinjing, WEI Shunyan, SHAO Liming, et al. Emission potential of volatile sulfur compounds (VSCs) and ammonia from sludge compost with different bio-stability under various oxygen levels[J]. Waste Management, 2018, 73: 113-122. |
11 | CECILIA Conti, MARCELLA Guarino, JACOPO Bacenetti. Measurements techniques and models to assess odor annoyance: a review[J]. Environment International, 2020, 134: 105261. |
12 | 国家环境保护局. 恶臭污染物排放标准: [S]. 北京: 中国标准出版社, 1994. |
State Environmental Protection Administration. Emission standards for odor pollutants: [S]. Beijing: China Standards Press, 1994. | |
13 | ZHAO Yan, LU Wenjing, WANG Hongtao. Volatile trace compounds released from municipal solid waste at the transfer stage: evaluation of environmental impacts and odour pollution[J]. Journal of Hazardous Materials, 2015, 300: 695-701. |
14 | CHANG Huiming, TAN Haobo, ZHAO Yan, et al. Statistical correlations on the emissions of volatile odorous compounds from the transfer stage of municipal solid waste[J]. Waste Management, 2019, 87: 701-708. |
15 | 姬亚芹, 陈丽, 宫庆超, 等. 恶臭排放规律及其采样和分析方法 [J]. 中国环境监测, 2013, 29(3): 132-136. |
JI Yaqin, CHEN Li, GONG Qingchao, et al. Malodorous emission law and the method of sampling and analysis[J]. Environmental Monitoring of China, 2013, 29(3): 132-136. | |
16 | 国家环境保护总局. 大气污染物无组织排放监测技术导则: [S]. 北京: 中国环境科学出版社, 2004. |
State Environmental Protection Administration. Technical guidelines for fugitive emission monitoring of air pollutant: [S]. Beijing: China Environmental Science Press, 2004. | |
17 | VILAVERT Lolita, NADAL Martí, FIGUERAS María J, et al. Volatile organic compounds and bioaerosols in the vicinity of a municipal waste organic fraction treatment plant. Human health risks[J]. Environmental Science and Pollution Research, 2012, 19(1): 96-104. |
18 | 翟增秀, 李伟芳, 王亘, 等. 天津城区环境空气VOCs浓度及恶臭污染感官分析[J]. 环境化学, 2015, 34(8): 1564-1566. |
ZHAI Zengxiu, LI Weifang, WANG Gen, et al. Concentration of VOCs and sensorial analysis of malodor pollution of ambient air in Tianjin urban area[J]. Environmental Chemistry, 2015, 34(8): 1564-1566. | |
19 | 方晶晶, 章骅, 吕凡, 等. 生活垃圾收运过程中恶臭暴露的健康风险评估[J]. 中国环境科学, 2015, 35(3): 906-916. |
FANG Jingjing, ZHANG Hua, Fan LYU, et al. Health risk assessment of exposure to odorous pollutants emitted from the transportation process of MSW[J]. China Environmental Science, 2015, 35(3): 906-916. | |
20 | SUN Zhongtao, CHENG Zhaowen, WANG Luochun, et al. The typical MSW odorants identification and the spatial odorants distribution in a large-scale transfer station[J]. Environmental Science and Pollution Research, 2017, 24(8): 7705-7713. |
21 | FANG Jingjing, ZHANG Hua, YANG Na, et al. Gaseous pollutants emitted from a mechanical biological treatment plant for municipal solid waste: odor assessment and photochemical reactivity[J]. Journal of the Air & Waste Management Association, 2013, 11(63): 1287-1297. |
22 | FANG Jingjing, LÜ Fan, ZHANG Hua, et al. Odor compounds released from different zones of two adjacent waste treatment facilities: interactive influence and source identification[J]. Journal of the Air and Waste Management Association, 2015, 65(12): 1446-1455. |
23 | 张妍, 王元刚, 卢志强, 等. 我国餐厨废物生化处理设施恶臭排放特征分析[J]. 环境科学, 2015, 36(10): 3603-3610. |
ZHANG Yan, WANG Yuangang, LU Zhiqiang, et al. Odor emission characteristics from biochemical treatment facilities of kitchen waste in China[J]. Environmental Science, 2015, 36(10): 3603-3610. | |
24 | WU Chuandong, LIU Jiemin, YAN Luchun, et al. Assessment of odor activity value coefficient and odor contribution based on binary interaction effects in waste disposal plant[J]. Atmospheric Environment, 2015, 103: 231-237. |
25 | 芦会杰. 典型生活垃圾处理设施恶臭排放特征及污染评价[J]. 环境科学, 2017, 38(8): 3178-3184. |
LU Huijie. Odor emission characteristics and pollution evaluation from typical household rubbish disposal facilities[J]. Environmental Science, 2017, 38(8): 3178-3184. | |
26 | 何飞雨, 沈斯亮, 陈赟, 等. 我国南方某填埋场作业面氨气释放和扩散规律分析[J]. 环境科学学报, 2018, 38(9): 3457-3466. |
HE Feiyu, SHEN Siliang, CHEN Yun, et al. Analysis of ammonia emission and diffusion at a working face on a municipal solid waste landfill in south of China[J]. Acta Scientiae Circumstantiae, 2018, 38(9): 3457-3466. | |
27 | SHEN Siliang, WANG Qiao, CHEN Yunmin, et al. Effect of landfill odorous gas on surrounding environment: a field investigation and numerical analysis in a large-scale landfill in Hangzhou, China[C]//ZHAN Liangtong, CHEN Yunmin, BOUAZZA Abdelmalek. Proceedings of the 8th International Congress on Environmental Geotechnics. Singapore: Springer Singapore, 2019: 51-59. |
28 | LIU Yanjun, LU Wenjing, WANG Hongtao, et al. Improved impact assessment of odorous compounds from landfills using Monte Carlo simulation[J]. Science of the Total Environment, 2019, 648: 805-810. |
29 | 王亘, 张妍, 张超, 等. 垃圾填埋场恶臭污染对感官影响的评价研究[J]. 农业工程学报, 2019, 35(12): 232-238. |
WANG Gen, ZHANG Yan, ZHANG Chao, et al. Sense assessment of odor pollution from landfill[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(12): 232-238. | |
30 | DUAN Zhenhan, LU Wenjing, LI Dong, et al. Temporal variation of trace compound emission on the working surface of a landfill in Beijing, China[J]. Atmospheric Environment, 2014, 88: 230-238. |
31 | LIU Yanjun, LU Wenjing, DASTYAR Wafa, et al. Fugitive halocarbon emissions from working face of municipal solid waste landfills in China[J]. Waste Management, 2017, 70: 149-157. |
32 | 闫凤越, 邹克华, 李伟芳, 等. 垃圾填埋场恶臭气体的指纹谱[J]. 环境化学, 2013, 32(5): 854-859. |
YAN Fengyue, ZOU Kehua, LI Weifang, et al. Fingerprint of malodorous gases from MSW landfill[J]. Environmental Chemistry,2013, 32(5): 854-859. | |
33 | WU Chuandong, LIU Jiemin, LIU Shihua, et al. Assessment of the health risks and odor concentration of volatile compounds from a municipal solid waste landfill in China[J]. Chemosphere, 2018, 202: 1-8. |
34 | FANG Jingjing, YANG Na, CEN Danyan, et al. Odor compounds from different sources of landfill: characterization and source identification[J]. Waste Management, 2012, 32(7): 1401-1410. |
35 | 国家环境保护局. 固定污染源排气中颗粒污染物与气态污染物采样方法: [S]. 北京: 中国环境科学出版社, 1996. |
State Environmental Protection Administration. The determination of particulates and sampling methods of gaseous pollutants emitted from exhaust gas of stationary source: [S]. Beijing: China Environmental Science Press, 1996. | |
36 | 中华人民共和国环境保护部. 恶臭污染环境监测技术规范: [S]. 北京: 中国环境科学出版社, 2018. |
Ministry of Environmental Protection of the People’s Republic of China. Technical specification for environmental monitoring of odor: [S]. Beijing: China Environmental Science Press, 2018. | |
37 | KOZIEL Jacek A, SPINHIRNE Jarett P, LLOYD Jenny D, et al. Evaluation of sample recovery of malodorous livestock gases from air sampling bags, solid-phase microextraction fibers, Tenax TA sorbent tubes, and sampling canisters[J]. Journal of the Air & Waste Management Association, 2005, 55(8): 1147-1157. |
38 | 中华人民共和国环境保护部. 环境空气 挥发性有机物的测定 罐采样/气相色谱-质谱法: [S]. 北京: 中国环境科学出版社, 2015. |
Ministry of Environmental Protection of the People’s Republic of China. Ambient air-determination of volatile organic compounds-collected by specially-prepared canisters and analyzed by gas chromatography/mass spectrometry:[S]. Beijing: China Environmental Science Press, 2015. | |
39 | 中华人民共和国环境保护部. 环境空气 挥发性有机物的测定 吸附管采样-热脱附/气相色谱-质谱法: [S].北 京: 中国环境科学出版社, 2013. |
Ministry of Environmental Protection of the People’s Republic of China. Ambient air - Determination of volatile organic compounds— Sorbent adsorption and thermal desorption/gas chromatography mass spectrometry method: [S]. Beijing: China Environmental Science Press, 2013. | |
40 | 中华人民共和国环境保护部. 环境空气 氨的测定 次氯酸钠-水杨酸分光光度法: [S]. 北京: 中国环境科学 出版社, 2009. |
Ministry of Environmental Protection of the People’s Republic of China. Ambient air—Determination of ammonia—Sodium hypochlorite-salicylicacid spectrophotometry: [S]. Beijing: China Environmental Science Press, 2009. | |
41 | BEGHI Sandra, GUILLOT Jean Michel. Use of poly(ethylene terephtalate) film bag to sample and remove humidity from atmosphere containing volatile organic compounds[J]. Journal of Chromatography A, 2008, 1183(1): 1-5. |
42 | BOKOWA Anna. H. Odour assessment: determining the optimum temperature and time for Tedlar sampling bag pre-conditioning[J]. Water Science and Technology, 2012, 66(8): 1806-1811. |
43 | MOCHALSKI Paweł, WZOREK Beata, Ireneusz ŚLIWKA, et al. Suitability of different polymer bags for storage of volatile sulphur compounds relevant to breath analysis[J]. Journal of Chromatography B, 2009, 877(3): 189-196. |
44 | ZARRA Tiziano, REISER Martin, NADDEO Vincenzo, et al. A comparative and critical evaluation of different sampling materials in the measurement of odour concentration by dynamic olfactometry[J]. Chemeical Engineering Transactions, 2012, 30: 307-312. |
45 | MOCHALSKI Paweł, KING Julian, UNTERKOFLER Karl, et al. Stability of selected volatile breath constituents in Tedlar, Kynar and Flexfilm sampling bags[J]. Analyst, 2013, 138(5): 1405-1418. |
46 | EUSEBIO Lidia, CAPELLI Laura, SIRONI Selena. H2S loss through Nalophan™ bags: contributions of adsorption and diffusion[J]. The Scientific World Journal, 2017, 2017: 1-15. |
47 | 鲍雷, 唐晓. VOCs在线气相色谱自动监测技术及相关仪器简介[J]. 分析仪器, 2014(6): 87-92. |
BAO Lei, TANG Xiao. VOCs gas chromatography online automatic monitoring technology and related equipment[J]. Analytical Instrumentation, 2014(6): 87-92. | |
48 | DORADO Antonio D, HUSNI Shafik, PASCUAL Guillem, et al. Inventory and treatment of compost maturation emissions in a municipal solid waste treatment facility[J]. Waste Management, 2014, 34(2): 344-351. |
49 | WANG Xinming, WU Ting. Release of isoprene and monoterpenes during the aerobic decomposition of orange wastes from laboratory incubation experiments[J]. Environmental Science & Technology, 2008, 42(9): 3265-3270. |
50 | 云自厚, 欧阳津, 张晓彤. 液相色谱检测方法[M]. 2版. 北京: 化学工业出版社, 2005:17-39. |
YUN Zihou, OUYANG Jin, ZHANG Xiaotong. HPLC method for determination[M]. 2nd. ed. Beijing: Chemical Industry Press, 2005:17-39. | |
51 | WU Ting, WANG Xinming, LI Dejun, et al. Emission of volatile organic sulfur compounds (VOSCs) during aerobic decomposition of food wastes[J]. Atmospheric Environment, 2010, 44(39): 5065-5071. |
52 | 石磊. 恶臭污染测试与控制技术[M]. 北京: 化学工业出版社, 2004:128. |
SHI Lei. Test and control technique of malodorous pollutant [M]. Beijing: Chemical Industry Press, 2004:128. | |
53 | 朱海欧, 卢志刚, 汪蓉, 等. 热脱附气相色谱质谱法测定空气中萜烯有机物[J]. 环境科学与技术, 2013, 36(3): 160-164. |
ZHU Haiou, LU Zhigang, WANG Rong, et al. Determination of terpene compounds in air by autothermal desorption-GC/MS[J]. Environmental Science & Technology, 2013, 36(3): 160-164. | |
54 | 雷春妮, 周围, 张雅珩, 等. 热脱附-冷阱捕集-气相色谱-质谱法测定空气中34种挥发性有机物[J]. 理化检验(化学分册), 2017, 53(8): 908-913. |
LEI Chunni, ZHOU Wei, ZHANG Yaheng, et al. GC-MS determination of 34 volatile organic compounds in air with thermal desorption and cold trap[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2017, 53(8): 908-913. | |
55 | AGAPIOS Agapiou, ANDREAS Vasileiou, MARINOS Stylianou, et al. Waste aroma profile in the framework of food waste management through household composting[J]. Journal of Cleaner Production, 2020, 257: 120340. |
56 | 李贺. 大气中VOCs固相萃取监测方法质控体系研究[D]. 大连: 大连海事大学, 2015. |
LI He. Sampling method of solid phase extraction for monitoring of VOCs in ambient air[D]. Dalian: Dalian Maritime University,2015. | |
57 | 张娟, 王永花, 孙成. 固相微萃取-气相色谱法测定空气样品中的苯系物[J]. 分析科学学报, 2010, 26(4): 379-382. |
ZHANG Juan, WANG Yonghua, SUN Cheng. Solid phase microextraction-GC determination of BTEX in air sample[J]. Journal of Analytical Science, 2010, 26(4): 379-382. | |
58 | 李瑞, 吴鹏, 王燕, 等. GC-MS法分析水芹挥发性成分[J]. 扬州大学学报(农业与生命科学版), 2019, 40(2): 113-118. |
LI Rui, WU Peng, WANG Yan, et al. Analysis of volatile compounds in different issues of water dropwort by using GC-MS[J]. Journal of Yangzhou University(Agricultural and Life Science Edition), 2019, 40(2): 113-118. | |
59 | WISNIEWSKA Marta, KULIG Andrzej, Krystyna LELICIŃSKA-SERAFIN. Effect of meteorological conditions on odour emission at biogas plants processing municipal waste-pilot research[C]//International Conference on Advances in Energy Systems and Environmental Engineering (ASEE19). France: EDP Sciences, 2019, 116: 00098-00105. |
60 | XU Ankun, CHANG Huimin, ZHAO Yan, et al. Dispersion simulation of odorous compounds from waste collection vehicles: mobile point source simulation with ModOdor[J]. Science of the Total Environment, 2020, 711: 135109. |
61 | 国家环境保护局. 大气污染物综合排放标准: [S]. 北京: 中国标准出版社, 1997. |
State Environmental Protection Administration. Comprehensive emission standard of air pollutants: [S]. Beijing: China Standards Press, 1997. | |
62 | 王玉婧, 章骅, 吕凡, 等. 生活垃圾转运站恶臭污染控制现状与问题思考[J]. 环境卫生工程, 2019, 27(1): 1-9. |
WANG Yujing, ZHANG Hua, Fan LYU, et al. Current status andproblems of odour pollution control in transfer station of municipal solid waste[J]. Environmental Sanitation Engineering, 2019, 27(1): 1-9. | |
63 | 中华人民共和国住房和城乡建设部. 生活垃圾堆肥处理技术规范: [S]. 北京: 中国建筑工业出版社, 2015. |
Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Technical code for the composting of municipal solid waste: [S]. Beijing: China Architecture & Building Press, 2015. | |
64 | 中华人民共和国住房和城乡建设部. 生活垃圾焚烧厂评价标准: [S]. 北京: 中国建筑工业出版社, 2019. |
Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for assessment on municipal solid waste incineration plant: [S]. Beijing: China Architecture & Building Press, 2019. | |
65 | 中华人民共和国住房和城乡建设部. 生活垃圾卫生填埋场运行监管标准: [S]. 北京: 中国建筑工业出版社, 2016. |
Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for supervision on operation of municipal solid waste landfill: [S]. Beijing: China Architecture & Building Press, 2016. | |
66 | CHANG Huiming, ZHAO Yan, TAN Haobo, et al. Parameter sensitivity to concentrations and transport distance of odorous compounds from solid waste facilities[J]. Science of the Total Environment, 2019, 651: 2158-2165. |
67 | BRANCHER Marlon, KNAUDER Werner, PIRINGER Martin, et al. Temporal variability in odour emissions: to what extent this matters for the assessment of annoyance using dispersion modelling[J]. Atmospheric Environment, 2020, 5: 100054. |
68 | LIU Yanjun, LU Wenjing, WANG Hongtao, et al. Odor impact assessment of trace sulfur compounds from working faces of landfills in Beijing, China[J]. Journal of Environmental Management, 2018, 220: 136-141. |
69 | WANG Qiao, ZUO Xinru, XIA Min, et al. Field investigation of temporal variation of volatile organic compounds at a landfill in Hangzhou, China[J]. Environmental Science and Pollution Research, 2019, 26(18): 18162-18180. |
70 | 魏儒义, 周锦松, 张学敏, 等. 基于OP/FTIR和反射转镜式干涉光谱仪的大气CO2浓度测量[J]. 光谱学与光谱分析, 2014, 34(11): 2978-2983. |
WEI Ruyi, ZHOU Jinsong, ZHANG Xuemin, et al. Measurement of CO2 concentration in the atmosphere based on OP/FTIR and reflection-rotating interferometer[J]. Spectroscopy and Spectral Analysis, 2014, 34(11): 2978-2983. | |
71 | PICXOF Stephen D, MASEMORE Sushma S, Wyn LEWIS-BEVAN, et al. Field assessment of a new method for estimating emission rates from volume sources using Open-Path FTIR spectroscopy[J]. Journal of the Air & Waste Management Association, 1996, 46(2): 159-171. |
72 | 高松, 施禅臻, 伏晴艳. OP-FTIR在化工区空气特征污染监测中应用研究[J]. 环境科学与技术, 2017, 40(S2): 201-206. |
GAO Song. SHI Chanzhen, FU Qingyan. Application of OP-FTIR in air pollution monitoring of chemical industry[J]. Environmental Science & Technology, 2017, 40(S2): 201-206. | |
73 | 贾润中, 李明骏, 朱亮, 等. OP-FTIR技术在评估炼化装置VOCs排放量中的应用研究[J]. 现代化工, 2017, 37(10): 177-180. |
JIA Runzhong, LI Mingjun, ZHU Liang, et al. Application of OP-FTIR technology in evaluating VOCs emission from refining and chemical plant[J]. Modern Chemical Industry, 2017, 37(10): 177-180. | |
74 | QIN Linbo, XU Zhe, LIU Lei, et al. In-situ biodegradation of volatile organic compounds in landfill by sewage sludge modified waste-char[J]. Waste Management, 2020, 105: 317-327. |
75 | LIU Junwan, ZHENG Guodi. Emission of volatile organic compounds from a small-scale municipal solid waste transfer station: ozone-formation potential and health risk assessment[J]. Waste Management, 2020, 106: 193-202. |
76 | CAPELLI Laura, SIRONI Selena. Combination of field inspection and dispersion modelling to estimate odour emissions from an Italian landfill[J]. Atmospheric Environment, 2018, 191: 273-290. |
77 | LUCERNONI Federico, CAPELLI Laura, SIRONI Selena. Comparison of different approaches for the estimation of odour emissions from landfill surfaces[J]. Waste Management, 2017, 63: 345-353. |
78 | ZHENG Guodi, LIU Junwan, SHAO Zhuze, et al. Emission characteristics and health risk assessment of VOCs from a food waste anaerobic digestion plant: a case study of Suzhou, China[J]. Environmental Pollution, 2020, 257: 113546. |
79 | ZHANG Yuna, LIANG Zhishu, TANG Changcheng, et al. Malodorous gases production from food wastes decomposition by indigenous microorganisms[J]. Science of the Total Environment, 2020, 717: 137175. |
80 | LI Guiying, ZHANG Zhengyong, SUN Hongwei, et al. Pollution profiles, health risk of VOCs and biohazards emitted from municipal solid waste transfer station and elimination by an integrated biological-photocatalytic flow system: a pilot-scale investigation[J]. Journal of Hazardous Materials, 2013, 250/251: 147-154. |
[1] | LI Ning, LI Jinke, DONG Jinshan. Research and development of porous medium burner in ethylene cracking furnace [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 73-83. |
[2] | WANG Ying, HAN Yunping, LI Lin, LI Yanbo, LI Huili, YAN Changren, LI Caixia. Research status and future prospects of the emission characteristics of virus aerosols in urban wastewater treatment plants [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 439-446. |
[3] | LI You, WU Yue, ZHONG Yu, LIN Qixuan, REN Junli. Pretreatment of wheat straw with acidic molten salt hydrate for xylose production and its effect on enzymatic hydrolysis efficiency [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4974-4983. |
[4] | XU Jie, XIA Longbo, LUO Ping, ZOU Dong, ZHONG Zhaoxiang. Progress in preparation and application of omniphobic membranes for membrane distillation process [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3943-3955. |
[5] | ZHANG Lele, QIAN Yundong, ZHU Huatong, FENG Silong, YANG Xiuna, YU Ying, YANG Qiang, LU Hao. Study on optimization limits of dehydration and desalination pretreatment of hydrogenated coal tar [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2298-2305. |
[6] | ZHANG Ning, WU Haibin, LI Yu, LI Jianfeng, CHENG Fangqin. Recent advances in preparation and application of floating photocatalysts in water treatment [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2475-2485. |
[7] | FU Jia, CHEN Lunjian, XU Bing, HUA Shaofeng, LI Congqiang, YANG Mingkun, XING Baolin, YI Guiyun. Microbial degradation of phenol in simulated coal gasification wastewater [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 526-537. |
[8] | YANG Zheng, XIE Yongli, YANG Guangyao, ZHANG Lizhong, LIU Yunxiang. Application analysis of direct cooling exhaust air heat pump system in Xiaobaodang coal mine [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 643-647. |
[9] | HAN Mingyang, QIAO Hui, FU Jiaming, MA Zewen, WANG Yan, OUYANG Jia. Research progress of non-aqueous solvents on the pretreatment of lignocellulose [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4086-4097. |
[10] | XU Hu, GUO Hongkai, CHAI Changsheng, HAO Xiangzhong, YANG Ziyuan, XU Weijun. Carbon fiber materials used for the electrode of electro-Fenton system: a critical review [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3707-3718. |
[11] | XU Tianyuan, ZHENG Xi, WANG Lianjuan, CHEN Ting, WEI Xinpeng. Persulfate activation by coke powder for aniline degradation [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3314-3323. |
[12] | MO Qianci, YE Haibo, LIN Xingsu, LI Guohua, CHEN Weichong, LU Wei. Energy analysis and energy efficiency improvement strategies of bagasse boiler based on test data [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3350-3359. |
[13] | RUAN Min, SUN Yutong, HUANG Zhongliang, LI Hui, ZHANG Xuan, WU Xikai, ZHAO Cheng, YAO Shirong, ZHANG Shuanbao, ZHANG Wei, HUANG Jing. Energy economy evaluation of sludge pretreatment-anaerobic digestion system [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1503-1516. |
[14] | LU Zhaojin, REN Guanwei, LYU Fuwei, DONG Xiao, BAI Zhishan. Development and application of deacidification technology in domestic sulfuric acid alkylation refining system [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1430-1439. |
[15] | XIE Xianli, LIU Yunyun, YU Qiang, ZHANG Yu, ZHANG Rongqing, QIU Yuxin. Improving enzymatic hydrolysis effect of herb residue by deep eutectic solvent pretreatment [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1349-1356. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |