Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (2): 1069-1076.DOI: 10.16085/j.issn.1000-6613.2020-0708
• Resources and environmental engineering • Previous Articles Next Articles
Xu CHEN(), Yongyu ZHU, Jun TAO, Chunhua WANG(
)
Received:
2020-04-29
Revised:
2020-05-26
Online:
2021-02-09
Published:
2021-02-05
Contact:
Chunhua WANG
通讯作者:
王春华
作者简介:
陈旭(1974—),女,博士,教授,硕士生导师,研究方向为加热炉燃烧技术及管道腐蚀。E-mail:基金资助:
CLC Number:
Xu CHEN, Yongyu ZHU, Jun TAO, Chunhua WANG. NOx emission performance and operation optimization of low nitrogen burner[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 1069-1076.
陈旭, 朱永郁, 陶军, 王春华. 低氮燃烧器的NOx排放性能及运行优化[J]. 化工进展, 2021, 40(2): 1069-1076.
1 | 李巍. 燃气锅炉在中国的发展前景[J]. 应用能源技术, 2003(1): 29-30. |
LI Wei. Development foreground of gas burning boiler in China [J] Applied Energy Technology, 2003(1): 29-30. | |
2 | 张耀荣. 浅析燃气锅炉的发展前景[J]. 河北煤炭, 2008, 31(5): 28-29. |
ZhANG Yaorong. Analysis on the developing foreground of the gas boiler [J]. Hebei Coal, 2008, 31(5): 28-29. | |
3 | 邢献军, 王宝源, 林其钊. 常温空气无焰燃烧在燃煤锅炉煤改气中的应用[J]. 热能动力工程, 2007, 22(3): 284-287. |
XING Xianjun, WANG Baoyuan, LIN Qizhao. Application of flameless air combustion at room temperature in coal-fired boiler converting coal to gas [J]. Engineering for Thermal Energy and Power, 2007, 22(3): 284-287. | |
4 | 北京市地方标准锅炉大气污染物排放标准: [S].Beijing Local Standard Boiler Air Pollutant Emission Standard: DB11/ |
139—2015 [S]. | |
5 | 姬海民, 王电, 石敬恒. 基于FGR系统的新型低氮燃气燃烧器在燃气锅炉NOx排放中应用[J]. 热力发电, 2018, 47(2): 103-107. |
JI Haimin, WANG Dian, SHI Jingheng. Application of new low NOx gas burner based on FGR system in NOx emission from gas-fired boilers[J]. Thermal Power Generation, 2018, 47(2): 103-107. | |
6 | 吴雪晴. 新型低NOx燃气燃烧器的数值模拟与试验研究[D]. 长沙: 长沙理工大学, 2015. |
WU Xueqing. Numerical modelling and experimental investigation on new low-NOx gas burner[D]. Changsha: Changsha University of Science & Technology, 2015. | |
7 | 宋少鹏. 基于烟气再循环的工业锅炉天然气低氮燃烧研究[D]. 北京: 清华大学, 2016. |
SONG Shaopeng. Study on low nitrogen combustion of natural gas in industrial boilers based on flue gas recycling[D]. Beijing: Tsinghua University, 2016. | |
8 | 吴晓磊, 刘波, 任政, 等. 新型低氮燃气分级燃烧器燃烧特性和NOx排放的CFD研究[J]. 化工进展, 2014, 33(9): 2298-2303. |
WU Xiaolei, LIU Bo, REN Zheng, et al. CFD study on combustion properties and NOx emission of reboiling furnace for xylene tower[J]. Chemical Industry and Engineering Progress, 2014, 33(9): 2298-2303. | |
9 | 毛玉如, 方梦祥, 王树荣, 等. 空气分离/烟气再循环技术研究进展[J]. 锅炉技术, 2002(3): 5-9. |
MAO Yuru, FANG Mengxiang, WANG Shurong, et al. Current development of research on air separation/flue gas recycle technology[J]. Boiler Technology, 2002(3) : 5-9. | |
10 | 成珊. 多段式自预热燃烧器设计、模拟及试验研究[D]. 长沙: 长沙理工大学, 2012. |
CHENG Shan. Design, simulation and experiment investigation on a multi-stage self-preheating burner[D]. Changsha: Changsha University of Science & Technology, 2012. | |
11 | SHALAJ V V, MIKHAJLOV A G, NOVIKOVA E E, et al. Gas recirculation impact on the nitrogen oxides formation in the boiler furnace[J]. Procedia Engineering, 2016, 152: 434-438. |
12 | SHALAJ V V, MIKHAJLOV A G, SLOBODINA E N, et al. Issues on nitrogen oxides concentration reduction in the combustion products of natural gas[J]. Procedia Engineering, 2015, 113: 287-291. |
13 | KORPELA T, KUMPULAINEN P, MAJANNE Y, et al. Model based NOx emission monitoring in natural gas fired hot water boilers[J]. IFAC Papersonline, 2015, 48(30): 385-390. |
14 | BATRAKOV P A. The nitrogen oxide formation studying at natural gas combustion in non-circular profile furnaces of fire-tube boilers[J]. Procedia Engineering, 2016, 152: 144-150. |
15 | BALTASAR J, CARVALHO M G, COELHO P, et al. Flue gas recirculation in a gas-fired laboratory furnace: measurements and modelling[J]. Fuel, 1997, 76(10): 919-929. |
16 | YU Byeonghun, Seungro LEE, Chang-Eon LEE. Study of NOx emission characteristics in CH4/air non-premixed flames with exhaust gas recirculation[J]. Energy, 2015, 91: 119-127. |
17 | 宋少鹏, 卓建坤, 李娜, 等. 燃料分级与烟气再循环对天然气低氮燃烧特性影响机理[J]. 中国电机工程学报, 2016, 36(24): 6849-6858. |
SONG Shaopeng, ZHUO Jiankun, LI Na, et al. Low NOx combustion mechanism of a natural gas burner with fuel-staged and flue gas recirculation[J]. Proceedings of the CSEE, 2016, 36(24): 6849-6858. | |
18 | 王志宁, 杨协和, 张扬, 等. 内/外烟气再循环对天然气燃烧NOx生成的影响[J]. 化工进展, 2019, 38(9): 4327-4334. |
WANG Zhining, YANG Xiehe, ZHANG Yang, et al. I-/e-FGR effect on NOx emission of natural gas combustion[J]. Chemical Industry and Engineering Progress, 2019, 38(9): 4327-4334. | |
19 | 何建军, 陆全华, 王春华. 用于燃气锅炉烟气回流内外双循环低氮燃烧器与燃气锅炉: CN208859604U[P]. 2019-05-14. |
HE Jianjun, LU Quanhua, WANG Chunhua. Low nitrogen burner and gas boiler with internal and external double cycle for gas boiler and gas boiler: CN208859604U[P]. 2019-05-14. | |
20 | 曾强. 烟气再循环对燃气非预混燃烧NOx排放特性的影响[D]. 重庆: 重庆大学, 2018. |
ZENG Qiang. Effect of flue gas recirculation on NOx emissions characteristics of gas non-premixed combustion[D]. Chongqing: Chongqing University, 2018. | |
21 | 宋洪鹏, 周屈兰, 惠世恩, 等. 过量空气系数对燃气燃烧中NOx生成的影响[J]. 节能, 2004(1): 12-13. |
SONG Hongpeng, ZHOU Qulan, HUI Shien, et al. Influence of excess air coefficient on NOx formation in gas combustion[J]. Energy Conservation, 2004(1): 12-13. |
[1] | ZHAO Wei, ZHAO Deyin, LI Shihan, LIU Hongda, SUN Jin, GUO Yanqiu. Synthesis and application of triazine drag reducing agent for nature gas pipeline [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 391-399. |
[2] | WANG Ying, HAN Yunping, LI Lin, LI Yanbo, LI Huili, YAN Changren, LI Caixia. Research status and future prospects of the emission characteristics of virus aerosols in urban wastewater treatment plants [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 439-446. |
[3] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[4] | LI Ning, LI Jinke, DONG Jinshan. Research and development of porous medium burner in ethylene cracking furnace [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 73-83. |
[5] | SHAO Boshi, TAN Hongbo. Simulation on the enhancement of cryogenic removal of volatile organic compounds by sawtooth plate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 84-93. |
[6] | WANG Tai, SU Shuo, LI Shengrui, MA Xiaolong, LIU Chuntao. Dynamic behavior of single bubble attached to the solid wall in the AC electric field [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 133-141. |
[7] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[8] | YANG Yudi, LI Wentao, QIAN Yongkang, HUI Junhong. Analysis of influencing factors of natural gas turbulent diffusion flame length in industrial combustion chamber [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 267-275. |
[9] | CHEN Lin, XU Peiyuan, ZHANG Xiaohui, CHEN Jie, XU Zhenjun, CHEN Jiaxiang, MI Xiaoguang, FENG Yongchang, MEI Deqing. Investigation on the LNG mixed refrigerant flow and heat transfer characteristics in coil-wounded heat exchanger (CWHE) system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4496-4503. |
[10] | LIU Xuanlin, WANG Yikai, DAI Suzhou, YIN Yonggao. Analysis and optimization of decomposition reactor based on ammonium carbamate in heat pump [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4522-4530. |
[11] | ZHAO Xi, MA Haoran, LI Ping, HUANG Ailing. Simulation analysis and optimization design of mixing performance of staggered impact micromixer [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4559-4572. |
[12] | XU Jie, XIA Longbo, LUO Ping, ZOU Dong, ZHONG Zhaoxiang. Progress in preparation and application of omniphobic membranes for membrane distillation process [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3943-3955. |
[13] | YE Zhendong, LIU Han, LYU Jing, ZHANG Yaning, LIU Hongzhi. Optimization of thermochemical energy storage reactor based on calcium and magnesium binary salt hydrates [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4307-4314. |
[14] | YU Junnan, YU Jianfeng, CHENG Yang, QI Yibo, HUA Chunjian, JIANG Yi. Performance prediction of variable-width microfluidic concentration gradient chips by deep learning [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3383-3393. |
[15] | SHAN Xueying, ZHANG Meng, ZHANG Jiafu, LI Lingyu, SONG Yan, LI Jinchun. Numerical simulation of combustion of flame retardant epoxy resin [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3413-3419. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 565
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 571
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |