Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (9): 4905-4916.DOI: 10.16085/j.issn.1000-6613.2022-1920
• Resources and environmental engineering • Previous Articles Next Articles
WANG Chen1,3(), BAI Haoliang1,3, KANG Xue2,3()
Received:
2022-10-17
Revised:
2022-12-26
Online:
2023-09-28
Published:
2023-09-15
Contact:
KANG Xue
通讯作者:
康雪
作者简介:
王晨(1987—),男,副教授,研究方向为高效散热技术。E-mail:chenwang87@nuc.edu.cn。
基金资助:
CLC Number:
WANG Chen, BAI Haoliang, KANG Xue. Performance study of high power UV-LED heat dissipation and nano-TiO2 photocatalytic acid red 26 coupling system[J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4905-4916.
王晨, 白浩良, 康雪. 大功率UV-LED散热与纳米TiO2光催化酸性红26耦合系统性能[J]. 化工进展, 2023, 42(9): 4905-4916.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-1920
排布方式 | 辐照度最大值/W∙m-2 | 辐照度平均值/W∙m-2 | 均匀度/% |
---|---|---|---|
均匀排布 | 416.68 | 178.68 | 65.06 |
五边形排布 | 442.99 | 179.79 | 64.08 |
二三形排布 | 603.65 | 180.24 | 37.54 |
排布方式 | 辐照度最大值/W∙m-2 | 辐照度平均值/W∙m-2 | 均匀度/% |
---|---|---|---|
均匀排布 | 416.68 | 178.68 | 65.06 |
五边形排布 | 442.99 | 179.79 | 64.08 |
二三形排布 | 603.65 | 180.24 | 37.54 |
1 | 李春庚, 甄新, 李亚丽, 等. 印染废水染料降解技术研究进展[J]. 应用化工, 2022, 51(5): 1439-1444. |
LI Chungeng, ZHEN Xin, LI Yali, et al. Advances in dye degradation technology of printing and dyeing wastewater[J]. Applied Chemical Industry, 2022, 51(5): 1439-1444. | |
2 | 姜金宏, 何席伟, 熊晓敏, 等. 纺织印染废水毒性特征与控制技术研究进展[J]. 工业水处理, 2021, 41(6): 77-87. |
JIANG Jinhong, HE Xiwei, XIONG Xiaomin, et al. Research progress on toxicity characteristics and control technologies of textile dyeing wastewater[J]. Industrial Water Treatment, 2021, 41(6): 77-87. | |
3 | DOS SANTOS A B, CERVANTES F J, VAN LIER J B. Review paper on current technologies for decolourisation of textile wastewaters: Perspectives for anaerobic biotechnology[J]. Bioresource Technology, 2007, 98(12): 2369-2385. |
4 | 任南琪, 周显娇, 郭婉茜, 等. 染料废水处理技术研究进展[J]. 化工学报, 2013, 64(1): 84-94. |
REN Nanqi, ZHOU Xianjiao, GUO Wanqian, et al. A review on treatment methods of dye wastewater[J]. CIESC Journal, 2013, 64(1): 84-94. | |
5 | SRINIVASAN S, SADASIVAM S K. Exploring docking and aerobic-microaerophilic biodegradation of textile azo dye by bacterial systems[J]. Journal of Water Process Engineering, 2018, 22: 180-191. |
6 | CAO C H, XIAO L, CHEN C H, et al. In situ preparation of magnetic Fe3O4/chitosan nanoparticles via a novel reduction-precipitation method and their application in adsorption of reactive azo dye[J]. Powder Technology, 2014, 260: 90-97. |
7 | BAYRAMOĞLU G, YAKUP ARıCA M. Biosorption of benzidine based textile dyes “Direct Blue 1 and Direct Red 128” using native and heat-treated biomass of Trametes versicolor [J]. Journal of Hazardous Materials, 2007, 143(1/2): 135-143. |
8 | IMRAN M, ARSHAD M, NEGM F, et al. Yeast extract promotes decolorization of azo dyes by stimulating azoreductase activity in Shewanella sp. strain IFN4 [J]. Ecotoxicology and Environmental Safety, 2016, 124: 42-49. |
9 | BU J Q, YUAN L, ZHANG N, et al. High-efficiency adsorption of methylene blue dye from wastewater by a thiosemicarbazide functionalized graphene oxide composite[J]. Diamond and Related Materials, 2020, 101: 107604. |
10 | THABEDE P M, DAVID SHOOTO N, NAIDOO E B. Removal of methylene blue dye and lead ions from aqueous solution using activated carbon from black cumin seeds[J]. South African Journal of Chemical Engineering, 2020, 33: 39-50. |
11 | 贾艳萍, 张真, 佟泽为, 等. 铁碳微电解处理印染废水的效能及机理研究[J]. 化工学报, 2020, 71(4): 1791-1801. |
JIA Yanping, ZHANG Zhen, TONG Zewei, et al. Study on efficiency and mechanism of iron-carbon microelectrolysis treatment of dyeing wastewater[J]. CIESC Journal, 2020, 71(4): 1791-1801. | |
12 | GHANBARI F, MORADI M. A comparative study of electrocoagulation, electrochemical Fenton, electro-Fenton and peroxi-coagulation for decolorization of real textile wastewater: Electrical energy consumption and biodegradability improvement[J]. Journal of Environmental Chemical Engineering, 2015, 3(1): 499-506. |
13 | CHIU Y H, CHANG T F, CHEN C Y, et al. Mechanistic insights into photodegradation of organic dyes using heterostructure photocatalysts[J]. Catalysts, 2019, 9(5): 430. |
14 | CHANDRABOSE G, DEY A, GAUR S S, et al. Removal and degradation of mixed dye pollutants by integrated adsorption-photocatalysis technique using 2-D MoS2/TiO2 nanocomposite[J]. Chemosphere, 2021, 279: 130467. |
15 | KUMARAN V, SUDHAGAR P, KONGA A, et al. Photocatalytic degradation of synthetic organic reactive dye wastewater using GO-TiO2 nanocomposite[J]. Polish Journal of Environmental Studies, 2020, 29(2): 1683-1690. |
16 | DU F Q, YANG D M, KANG T X, et al. SiO2/Ga2O3 nanocomposite for highly efficient selective removal of cationic organic pollutant via synergistic electrostatic adsorption and photocatalysis[J]. Separation and Purification Technology, 2022, 295: 121221. |
17 | 李晋闽, 闫建昌, 郭亚楠, 等. 紫外LED研究进展[J]. 科技导报, 2021, 39(14): 30-41. |
LI Jinmin, YAN Jianchang, GUO Yanan, et al. Recent progress of ultraviolet light-emitting diodes[J]. Science & Technology Review, 2021, 39(14): 30-41. | |
18 | SONG K, MOHSENI M, TAGHIPOUR F. Application of ultraviolet light-emitting diodes (UV-LEDs) for water disinfection: A review[J]. Water Research, 2016, 94: 341-349. |
19 | ESKANDARIAN M R, FAZLI M, RASOULIFARD M H, et al. Decomposition of organic chemicals by zeolite-TiO2 nanocomposite supported onto low density polyethylene film under UV-LED powered by solar radiation[J]. Applied Catalysis B: Environmental, 2016, 183: 407-416. |
20 | ZHU L, CUI L Y, HUANG Q W, et al. Performance study of SOL&PID system for the degradation of Acid Red 26 and 4-chlorophenol[J]. Energy Conversion and Management, 2017, 136: 361-371. |
21 | LIANG R, VAN LEUWEN J C, BRAGG L M, et al. Utilizing UV-LED pulse width modulation on TiO2 advanced oxidation processes to enhance the decomposition efficiency of pharmaceutical micropollutants[J]. Chemical Engineering Journal, 2019, 361: 439-449. |
22 | SHENAI K, DUDLEY M, DAVIS R F. Current status and emerging trends in wide bandgap (WBG) semiconductor power switching devices[J]. ECS Journal of Solid State Science and Technology, 2013, 2(8): N3055-N3063. |
23 | CHENG T, LUO X B, HUANG S Y, et al. Thermal analysis and optimization of multiple LED packaging based on a general analytical solution[J]. International Journal of Thermal Sciences, 2010, 49(1): 196-201. |
24 | NARENDRAN N, GU Y, FREYSSINIER J P, et al. Solid-state lighting: Failure analysis of white LEDs[J]. Journal of Crystal Growth, 2004, 268(3/4): 449-456. |
25 | KALBASI R. Introducing a novel heat sink comprising PCM and air—Adapted to electronic device thermal management[J]. International Journal of Heat and Mass Transfer, 2021, 169: 120914. |
26 | XU Z. Heat transfer performance of the rectangular heat sinks with non-uniform height thermosyphons for high power LED lamps cooling[J]. Case Studies in Thermal Engineering, 2021, 25: 101013. |
27 | WANG Z B, ZHANG J, LIU Y C, et al. Study on the water cooling technology for the high power LED array[C]//2013 Third International Conference on Instrumentation, Measurement, Computer, Communication and Control. Shenyang: IEEE, 2014: 1289-1292. |
28 | WAN Z M, LIU J, SU K L, et al. Flow and heat transfer in porous micro heat sink for thermal management of high power LEDs[J]. Microelectronics Journal, 2011, 42(5): 632-637. |
29 | NOVAK V, ABDEL-KHALIK S I, SADOWSKI D L, et al. Investigation of mist cooling for the Electra KrF laser hibachi[J]. Fusion Science and Technology, 2007, 52(3): 483-488. |
30 | 陈萨如拉, 朱丽, 孙勇. 高热流密度器件散热技术的研究进展[J]. 流体机械, 2015,43(5): 39-45. |
CHEN Sarula, ZHU Li, SUN Yong. Research progress of cooling technologies for high heat flux density devices[J]. Fluid Machinery, 2015, 43(5): 39-45. | |
31 | 倪笠, 崔晓钰, 马柯. 大功率UV-LED固化灯水冷散热器[J]. 光电子技术, 2016,36(2): 130-134. |
NI Li, CUI Xiaoyu, MA Ke. A liquid cold plate for high power UV-LED curing lamps[J]. Optoelectronic Technology, 2016, 36(2): 130-134. | |
32 | KANG X, WANG Y P, HUANG Q W, et al. Phase-change immersion cooling high power light emitting diodes and heat transfer improvement[J]. Microelectronics Reliability, 2017, 79: 257-264. |
33 | CUI L Y, ZHU L, HUANG Q W, et al. Performance analysis of a solar photochemical photovoltaic hybrid system for decolorization of Acid Red 26 (AR 26)[J]. Energy, 2017, 127: 209-217. |
34 | KIM L, CHOI J H, JANG S H, et al. Thermal analysis of LED array system with heat pipe[J]. Thermochimica Acta, 2007, 455(1/2): 21-25. |
35 | YANG K S, LIN C C, SHYU J C, et al. Performance and two-phase flow pattern for micro flat heat pipes[J]. International Journal of Heat and Mass Transfer, 2014, 77: 1115-1123. |
36 | CHEN J, OLLIS D F, RULKENS W H, et al. Kinetic processes of photocatalytic mineralization of alcohols on metallized titanium dioxide[J]. Water Research, 1999, 33(5): 1173-1180. |
37 | LIN H W, ZHANG K, YANG G L, et al. Ultrafine nano 1T-MoS2 monolayers with NiO x as dual co-catalysts over TiO2 photoharvester for efficient photocatalytic hydrogen evolution[J]. Applied Catalysis B: Environmental, 2020, 279: 119387. |
38 | American National Standard Institute, Inc. Electronic projection-fixed resolution projectors: [S]. New York: National Association of Photographic Manufacture, Inc, 1997. |
39 | JALLOULI N, PASTRANA-MARTÍNEZ L M, RIBEIRO A R, et al. Heterogeneous photocatalytic degradation of ibuprofen in ultrapure water, municipal and pharmaceutical industry wastewaters using a TiO2/UV-LED system[J]. Chemical Engineering Journal, 2018, 334: 976-984. |
40 | PARK S J, JANG D, YOOK S J, et al. Optimization of a chimney design for cooling efficiency of a radial heat sink in a LED downlight[J]. Energy Conversion and Management, 2016, 114: 180-187. |
41 | 谢倩雯. 温度对LED性能的影响[J]. 物联网技术, 2012, 2(3): 37-38, 41. |
XIE Qianwen. The influence of temperature on the function of LED[J]. Internet of Things Technologies, 2012, 2(3): 37-38, 41. | |
42 | HOFFMANN M R, MARTIN S T, CHOI W, et al. Environmental applications of semiconductor photocatalysis[J]. Chemical Reviews, 1995, 95(1): 69-96. |
43 | QI S Y, LIU X T, ZHANG R Y, et al. Preparation and photocatalytic properties of g-C3N4/BiOCl heterojunction[J]. Inorganic Chemistry Communications, 2021, 133: 108907. |
44 | TUNESI S, ANDERSON M. Influence of chemisorption on the photodecomposition of salicylic acid and related compounds using suspended titania ceramic membranes[J]. The Journal of Physical Chemistry, 1991, 95(8): 3399-3405. |
45 | 全学军, 杨露, 程治良, 等. 偶氮染料在气-液-固循环浆态光催化反应器中的降解脱氮[J]. 化工学报, 2010, 61(11): 2829-2835. |
QUAN Xuejun, YANG Lu, CHENG Zhiliang, et al. Degradation and nitrogen removal of azo dye in gas-liquid-solid circulating slurry photocatalytic reactor[J]. CIESC Journal, 2010, 61(11): 2829-2835. |
[1] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Research progress on functionalization strategies of covalent organic frame materials and its adsorption properties for Hg(Ⅱ) and Cr(Ⅵ) [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 461-478. |
[2] | SUN Yuyu, CAI Xinlei, TANG Jihai, HUANG Jingjing, HUANG Yiping, LIU Jie. Optimization and energy-saving of a reactive distillation process for the synthesis of methyl methacrylate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 56-63. |
[3] | LIU Xuanlin, WANG Yikai, DAI Suzhou, YIN Yonggao. Analysis and optimization of decomposition reactor based on ammonium carbamate in heat pump [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4522-4530. |
[4] | HUANG Yufei, LI Ziyi, HUANG Yangqiang, JIN Bo, LUO Xiao, LIANG Zhiwu. Research progress on catalysts for photocatalytic CO2 and CH4 reforming [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4247-4263. |
[5] | GUO Lixing, PANG Weiying, MA Keyao, YANG Jiahan, SUN Zehui, ZHANG Pan, FU Dong, ZHAO Kun. Hierarchically multilayered TiO2 with spatial pore-structure for efficient photocatalytic CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3643-3651. |
[6] | LI Lanyu, HUANG Xinye, WANG Xiaonan, QIU Tong. Reflection and prospects on the intelligent transformation of chemical engineering research [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3325-3330. |
[7] | XUE Kai, WANG Shuai, MA Jinpeng, HU Xiaoyang, CHONG Daotong, WANG Jinshi, YAN Junjie. Planning and dispatch of distributed integrated energy systems for industrial parks [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3510-3519. |
[8] | XU Wei, LI Kaijun, SONG Linye, ZHANG Xinghui, YAO Shunhua. Research progress of photocatalysis and co-electrochemical degradation of VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3520-3531. |
[9] | YANG Hongmei, GAO Tao, YU Tao, QU Chengtun, GAO Jiapeng. Treatment of refractory organics sulfonated phenolic resin with ferrate [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3302-3308. |
[10] | GU Shiya, DONG Yachao, LIU Linlin, ZHANG Lei, ZHUANG Yu, DU Jian. Design and optimization of pipeline system for carbon capture considering intermediate nodes [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2799-2808. |
[11] | ZHANG Ning, WU Haibin, LI Yu, LI Jianfeng, CHENG Fangqin. Recent advances in preparation and application of floating photocatalysts in water treatment [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2475-2485. |
[12] | LI Xue, WANG Yanjun, WANG Yuchao, TAO Shengyang. Recent advances in bionic surfaces for fog collection [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2486-2503. |
[13] | YANG Zhuang, LI Runhua, QIANG Zengshou, WANG Yajun, YAO Wenqing. Photocatalytic degradation of waste refrigerant R134a [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2109-2114. |
[14] | SUN Xiao, ZHU Guangtao, PEI Aiguo. Industrialization and research progress of hydrogen liquefier [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1103-1117. |
[15] | ZOU Yincai, LI Qingguo, WU Hui, ZHONG Xiaobing, CHEN Xianzhi. Heat transfer simulation and optimization of missile borne phase change heat sink [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1248-1256. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |