Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (8): 4005-4014.DOI: 10.16085/j.issn.1000-6613.2023-0510
Previous Articles Next Articles
XIANG Yang(), HUANG Xun(), WEI Zidong()
Received:
2023-04-03
Revised:
2023-07-14
Online:
2023-09-19
Published:
2023-08-15
Contact:
HUANG Xun, WEI Zidong
通讯作者:
黄寻,魏子栋
作者简介:
向阳(1992—),男,博士研究生,研究方向为有机电合成。E-mail: 15077020402@163.com。
基金资助:
CLC Number:
XIANG Yang, HUANG Xun, WEI Zidong. Recent progresses in the activity and selectivity improvement of electrocatalytic organic synthesis[J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4005-4014.
向阳, 黄寻, 魏子栋. 电催化有机合成反应的活性和选择性调控研究进展[J]. 化工进展, 2023, 42(8): 4005-4014.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0510
1 | LIU Yuanwei, LOU Zhen xin, WU Xuefeng, et al. Molecularly distorted local structure in Bi2CuO4 oxide to stabilize lattice oxygen for efficient formate electrosynthesis[J]. Advanced Materials, 2022, 34(39): e2202568. |
2 | HORN Evan J, ROSEN Brandon R, BARAN Phil S. Synthetic organic electrochemistry: An enabling and innately sustainable method[J]. ACS Central Science, 2016, 2(5): 302-308. |
3 | MA Cong, FANG Ping, LIU Zhaoran, et al. Recent advances in organic electrosynthesis employing transition metal complexes as electrocatalysts[J]. Science Bulletin, 2021, 66(23): 2412-2429. |
4 | CHAKRABORTY Priyanka, MANDAL Rajib, GARG Nidhi, et al. Recent advances in transition metal-catalyzed asymmetric electrocatalysis[J]. Coordination Chemistry Reviews, 2021, 444: 214065. |
5 | NOVAES Luiz F T, LIU Jinjian, SHEN Yifan, et al. Electrocatalysis as an enabling technology for organic synthesis[J]. Chemical Society Reviews, 2021, 50(14): 7941-8002. |
6 | AKHADE Sneha A, Singh Nirala, GUTIÉRREZ Oliver Y, et al. Electrocatalytic hydrogenation of biomass-derived organics: A review[J]. Chemical Reviews, 2020, 120(20): 11370-11419. |
7 | REN Yongwen, YU Chang, TAN Xinyi, et al. Strategies to suppress hydrogen evolution for highly selective electrocatalytic nitrogen reduction: Challenges and perspectives[J]. Energy & Environmental Science, 2021, 14(3): 1176-1193. |
8 | ZHANG Yiqiong, WANG Dongdong, WANG Shuangyin. High-entropy alloys for electrocatalysis: Design, characterization, and applications[J]. Small, 2022, 18(7): 2104339. |
9 | SI Di, XIONG Bingyan, CHEN Lisong, et al. Highly selective and efficient electrocatalytic synthesis of glycolic acid in coupling with hydrogen evolution[J]. Chem Catalysis, 2021, 1(4): 941-955. |
10 | TOMBOC Gracita M, Kwon Taehyun, Joo Jinwhan, et al. High entropy alloy electrocatalysts: A critical assessment of fabrication and performance[J]. Journal of Materials Chemistry A, 2020, 8(30): 14844-14862. |
11 | GEORGE Easo P, RAABE Dierk, RITCHIE Robert O. High-entropy alloys[J]. Nature Reviews Materials, 2019, 4(8): 515-534. |
12 | FAN Linfeng, JI Yaxin, WANG Genxiang, et al. High entropy alloy electrocatalytic electrode toward alkaline glycerol valorization coupling with acidic hydrogen production[J]. Journal of the American Chemical Society, 2022, 144(16): 7224-7235. |
13 | XU Dong, ZHANG Shinan, CHEN Jiesheng, et al. Design of the synergistic rectifying interfaces in Mott-Schottky catalysts[J]. Chemical Reviews, 2023, 123(1): 1-30. |
14 | ZENG Ye, CAO Zhen, LIAO Jizhang, et al. Construction of hydroxide pn junction for water splitting electrocatalysis[J]. Applied Catalysis B: Environmental, 2021, 292: 120160. |
15 | YANG Ganceng, JIAO Yanqing, YAN Haijing, et al. Interfacial engineering of MoO2-FeP heterojunction for highly efficient hydrogen evolution coupled with biomass electrooxidation[J]. Advanced Materials, 2020, 32(17): e2000455. |
16 | YUAN Menglei, CHEN Junwu, BAI Yiling, et al. Unveiling electrochemical urea synthesis by co-activation of CO2 and N2 with Mott-Schottky heterostructure catalysts[J]. Angewandte Chemie International Edition, 2021, 60(19): 10910-10918. |
17 | HUANG Xun, ZHANG Ling, LI Cunpu, et al. High selective electrochemical hydrogenation of cinnamaldehyde to cinnamyl alcohol on RuO2-SnO2-TiO2/Ti electrode[J]. ACS Catalysis, 2019, 9(12): 11307-11316. |
18 | SHERAZ AHMAD Muhammad, HOONG NG Kim, CHEN Ching-Lung, et al. Nitrogen-phosphorous co-doped palladium electrocatalyst for glycerol electro-oxidation reaction (GEOR): An efficient system for mesoxalic acid and dihydroxyacetone production[J]. Fuel, 2023, 333: 126471. |
19 | WU Ruizhi, MENG Qinglei, YAN Jiang, et al. Electrochemical strategy for the simultaneous production of cyclohexanone and benzoquinone by the reaction of phenol and water[J]. Journal of the American Chemical Society, 2022, 144(4): 1556-1571. |
20 | ZHANG An, LIANG Yongxiang, ZHANG Han, et al. Doping regulation in transition metal compounds for electrocatalysis[J]. Chemical Society Reviews, 2021, 50(17): 9817-9844. |
21 | 卢贝丽, 刘杏, 尹铸, 等. 掺杂多孔碳材料催化硝基苯还原反应的研究进展[J]. 化工进展, 2021, 40(2): 778-788. |
LU Beili, LIU Xing, YIN Zhu, et al. Recent development on doped porous carbon materials for catalytic reduction of nitrobenzene[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 778-788. | |
22 | SUN Yuxia, SHIN Hyeyoung, WANG Fangyuan, et al. Highly selective electrocatalytic oxidation of amines to nitriles assisted by water oxidation on metal-doped α-Ni(OH)2 [J]. Journal of the American Chemical Society, 2022, 144(33): 15185-15192. |
23 | ZHOU Hua, LI Zhenhua, XU Simin, et al. Selectively upgrading lignin derivatives to carboxylates through electrochemical oxidative C(OH)—C bond cleavage by a Mn-doped cobalt oxyhydroxide catalyst[J]. Angewandte Chemie International Edition, 2021, 60(16): 8976-8982. |
24 | WANG Hui, YONG Dingyu, CHEN Shichuan, et al. Oxygen-vacancy-mediated exciton dissociation in BiOBr for boosting charge-carrier-involved molecular oxygen activation[J]. Journal of the American Chemical Society, 2018, 140(5): 1760-1766. |
25 | WANG Qichen, LEI Yongpeng, WANG Dingsheng, et al. Defect engineering in earth-abundant electrocatalysts for CO2 and N2 reduction[J]. Energy & Environmental Science, 2019, 12(6): 1730-1750. |
26 | ZHOU Peng, GUO Sixuan, LI Linbo, et al. Selective electrochemical hydrogenation of phenol with earth-abundant Ni—MoO2 heterostructured catalysts: Effect of oxygen vacancy on product selectivity[J]. Angewandte Chemie International Edition, 2023, 62(8): e202214881. |
27 | WEI Xiaoxiao, WEN Xiaojian, LIU Yingying, et al. Oxygen vacancy-mediated selective C-N coupling toward electrocatalytic urea synthesis[J]. Journal of the American Chemical Society, 2022, 144(26): 11530-11535. |
28 | LU Yuxuan, LIU Tianyang, DONG Chung-Li, et al. Tailoring competitive adsorption sites by oxygen-vacancy on cobalt oxides to enhance the electrooxidation of biomass[J]. Advanced Materials, 2022, 34(2): e2107185. |
29 | JIA Ranran, WANG Yuting, WANG Changhong, et al. Boosting selective nitrate electroreduction to ammonium by constructing oxygen vacancies in TiO2 [J]. ACS Catalysis, 2020, 10(6): 3533-3540. |
30 | LUO Xiaoxue, TANG Xiaoxia, NI Jingtian, et al. Electrochemical oxidation of styrene to benzaldehyde by discrimination of spin-paired π electrons[J]. Chemical Science, 2023, 14(7): 1679-1686. |
31 | ZHANG Yiqiong, ZHOU Bo, WEI Zengxi, et al. Coupling glucose-assisted Cu(Ⅰ)/Cu(Ⅱ) redox with electrochemical hydrogen production[J]. Advanced Materials, 2021, 33(48): e2104791. |
32 | HAN Xiaotong, SHENG Hongyuan, YU Chang, et al. Electrocatalytic oxidation of glycerol to formic acid by CuCo2O4 spinel oxide nanostructure catalysts[J]. ACS Catalysis, 2020, 10(12): 6741-6752. |
33 | XIN Yu, WANG Fengliang, CHEN Liyu, et al. Superior bifunctional cobalt/nitrogen-codoped carbon nanosheet arrays on copper foam enable stable energy-saving hydrogen production accompanied with glucose upgrading[J]. Green Chemistry, 2022, 24(17): 6544-6555. |
34 | DU Puyu, ZHANG Jingjing, LIU Yanhui, et al. Hydrogen generation from catalytic glucose oxidation by Fe-based electrocatalysts[J]. Electrochemistry Communications, 2017, 83: 11-15. |
35 | LIN Chong, ZHANG Panjing, WANG Shengying, et al. Engineered porous Co-Ni alloy on carbon cloth as an efficient bifunctional electrocatalyst for glucose electrolysis in alkaline environment[J]. Journal of Alloys and Compounds, 2020, 823: 153784. |
36 | LIN Chong, LI Huiqin, ZHANG Panjing, et al. Boosting water electrolysis with anodic glucose oxidation reaction over engineered cobalt nickel hydroxide nanosheet on carbon cloth[J]. Journal of Electroanalytical Chemistry, 2020, 861: 113946. |
37 | LI Guangyao, XU Yanqi, PAN Hong, et al. A bimetallic synergistic effect on the atomic scale of defect-enriched NiV-layered double hydroxide nanosheets for electrochemical phenol hydroxylation[J]. Journal of Materials Chemistry A, 2022, 10(12): 6748-6761. |
38 | WU Shutao, ZHANG Hongliang, HUANG Xun, et al. Acrylonitrile conversion on metal cathodes: How surface adsorption determines the reduction pathways[J]. Industrial & Engineering Chemistry Research, 2021, 60(23): 8324-8330. |
39 | KARIMI F, MOHAMMADI F, ASHRAFIZADEH S N. An experimental study of the competing cathodic reactions in electrohydrodimerization of acrylonitrile[J]. Journal of the Electrochemical Society, 2011, 158(12): 129-135. |
40 | KARIMI F, ASHRAFIZADEH S N, MOHAMMADI F. Process parameter impacts on adiponitrile current efficiency and cell voltage of an electromembrane reactor using emulsion-type catholyte[J]. Chemical Engineering Journal, 2012, 183: 402-407. |
41 | LI Zhenhua, LI Xiaofan, ZHOU Hua, et al. Electrocatalytic synthesis of adipic acid coupled with H2 production enhanced by a ligand modification strategy[J]. Nature Communications, 2022, 13: 5009. |
42 | LI Zhenhua, YAN Yifan, XU Simin, et al. Alcohols electrooxidation coupled with H2 production at high current densities promoted by a cooperative catalyst[J]. Nature Communications, 2022, 13: 147. |
43 | WU Shutao, ZHANG Hongliang, HUANG Xun, et al. Coupling electrochemical H2O2 production and the in situ selective oxidation of organics over a bifunctional TS-1@Co—N—C catalyst[J]. Chemical Communications, 2022, 58(64): 8942-8945. |
44 | 郑堂飞, 蒋金霞, 王健, 等. 基于限域特性的电催化剂调控[J]. 物理化学学报, 2021, 37(11): 101-113. |
ZHENG Tangfei, JIANG Jinxia, WANG Jian, et al. Regulation of electrocatalysts based on confinement-induced properties[J]. Acta Physico-Chimica Sinica, 2021, 37(11): 101-113. | |
45 | LI Heng, XUE Yanfang, GE Qingmei, et al. Chiral electroorganic chemistry: An interdisciplinary research across electrocatalysis and asymmetric synthesis[J]. Molecular Catalysis, 2021, 499: 111296. |
46 | LIN Qifeng, LI Longji, LUO Sanzhong. Asymmetric electrochemical catalysis[J]. Chemistry:A European Journal, 2019, 25(43): 10033-10044. |
47 | YUE Yingna, MENG Wangjun, LIU Li, et al. Amino acid-functionalized multi-walled carbon nanotubes: A metal-free chiral catalyst for the asymmetric electroreduction of aromatic ketones[J]. Electrochimica Acta, 2018, 260: 606-613. |
48 | HUNSOM Mali, SAILA Payia. Product distribution of electrochemical conversion of glycerol via Pt electrode: Effect of initial pH[J]. International Journal of Electrochemical Science, 2013, 8(9): 11288-11300. |
49 | VERMA Anand M, LAVERDURE Laura, MELANDER Marko M, et al. Mechanistic origins of the pH dependency in Au-catalyzed glycerol electro-oxidation: Insight from first-principles calculations[J]. ACS Catalysis, 2022, 12(1): 662-675. |
50 | ZHOU Ling, LI Yingying, LU Yuxuan, et al. pH-induced selective electrocatalytic hydrogenation of furfural on Cu electrodes[J]. Chinese Journal of Catalysis, 2022, 43(12): 3142-3153. |
51 | WANG Hong, WEI Xin, ZHANG Yujun, et al. Electrochemical analysis and convection-enhanced mass transfer synergistic effect of MnO x /Ti membrane electrode for alcohol oxidation[J]. Chinese Journal of Chemical Engineering, 2019, 27(1): 150-156. |
52 | ZHU Yunfeng, GAO Liang, ZONG Baoning, et al. A review of adiponitrile industrial production processes and associated atom economies[J]. Chinese Science Bulletin, 2015, 60(16): 1488-1501. |
53 | 刘佩璇. CO2电化学还原高性能反应器及Cu基双金属催化剂的设计研究[D]. 上海: 东华大学, 2021. |
LIU Peixuan. Design and research on high-performance reactor and Cu-based bimetallic catalyst for electrochemical reduction of carbon dioxide[D]. Shanghai: Donghua University, 2021. | |
54 | ZHANG Yuchi, LI Wenjing, CAO Yucai, et al. Selective electrosynthesis of 2,5-diformylfuran in a continuous-flow system[J]. ChemSusChem, 2022, 15(3): e202102596. |
55 | DELIMA Roxanna S, SHERBO Rebecca S, DVORAK David J, et al. Supported palladium membrane reactor architecture for electrocatalytic hydrogenation[J]. Journal of Materials Chemistry A, 2019, 7(46): 26586-26595. |
56 | SHERBO Rebecca S, KURIMOTO Aiko, BROWN Christopher M, et al. Efficient electrocatalytic hydrogenation with a palladium membrane reactor[J]. Journal of the American Chemical Society, 2019, 141(19): 7815-7821. |
57 | LI Jiao, LI Jianxin, WANG Hong, et al. Electrocatalytic oxidation of n-propanol to produce propionic acid using an electrocatalytic membrane reactor[J]. Chemical Communications, 2013, 49(40): 4501-4503. |
58 | ZHANG Hongliang, WU Shutao, HUANG Xun, et al. Integrating H2O2 generation from electrochemical oxygen reduction with the selective oxidation of organics in a dual-membrane reactor[J]. Chemical Engineering Journal, 2022, 428: 131534. |
59 | MO Yiming, LU Zhaohong, Rughoobur Girish, et al. Microfluidic electrochemistry for single-electron transfer redox-neutral reactions[J]. Science, 2020, 368(6497): 1352-1357. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[6] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[7] | XU Youhao, WANG Wei, LU Bona, XU Hui, HE Mingyuan. China’s oil refining innovation: MIP development strategy and enlightenment [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4465-4470. |
[8] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[9] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[10] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[11] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[12] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[13] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[14] | LIN Xiaopeng, XIAO Youhua, GUAN Yichen, LU Xiaodong, ZONG Wenjie, FU Shenyuan. Recent progress of flexible electrodes for ion polymer-metal composites (IPMC) [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4770-4782. |
[15] | ZHU Chuanqiang, RU Jinbo, SUN Tingting, XIE Xingwang, LI Changming, GAO Shiqiu. Characteristics of selective non-catalytic reduction of NO x with solid polymer denitration agent [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4939-4946. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |