1 |
IPCC. Climate change 2021: the physical science basis[M]. Cambridge: Cambridge University Press, 2021.
|
2 |
ROGELJ J, DEN E M, HÖHNE N, et al. Paris Agreement climate proposals need a boost to keep warming well below 2℃[J]. Nature, 2016, 534(7609): 631-639.
|
3 |
LEONZIO G, FOSCOLO P U, ZONDERVAN E, et al. Scenario analysis of carbon capture, utilization (particularly producing methane and methanol), and storage (CCUS) systems[J]. Industrial & Engineering Chemistry Research, 2020, 59(15): 6961-6976.
|
4 |
DUNSTAN M T, DONAT F, BORK A H, et al. CO2 capture at medium to high temperature using solid oxide-based sorbents: fundamental aspects, mechanistic insights, and recent advances[J]. Chemical Reviews, 2021, 121(20): 12681-12745.
|
5 |
SUN H, WU C, SHEN B, et al. Progress in the development and application of CaO-based adsorbents for CO2 capture: a review[J]. Materials Today Sustainability, 2018, 1/2: 1-27.
|
6 |
CHEN J, DUAN L B, SUN Z K. Review on the development of sorbents for calcium looping[J]. Energy & Fuels, 2020, 34(7): 7806-7836.
|
7 |
WANG K, GU F, CLOUGH P T, et al. CO2 capture performance of gluconic acid modified limestone-dolomite mixtures under realistic conditions[J]. Energy & Fuels, 2019, 33(8): 7550-7560.
|
8 |
HU Y C, LIU W Q, SUN J, et al. Structurally improved CaO-based sorbent by organic acids for high temperature CO2 capture[J]. Fuel, 2016, 167: 17-24.
|
9 |
王保文, 姜涛, 许炳辉, 等. 废弃蛋壳源高性能钙基吸收剂的制备及其碳捕集性能[J]. 化工进展, 2022, 41(3): 1289-1297.
|
|
WANG Baowen, JIANG Tao, XU Binghui, et al. Preparation of the calcium based adsorbent derived from egg shell waste and its CO2 capture performance in the calcium looping[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1289-1297.
|
10 |
GUO H X, KOU X C, ZHAO Y J, et al. Effect of synergistic interaction between Ce and Mn on the CO2 capture of calcium-based sorbent: textural properties, electron donation, and oxygen vacancy[J]. Chemical Engineering Journal, 2018, 334: 237-246.
|
11 |
郭红霞, 南雁, 寇晓晨, 等. 钙基CO2吸附剂的惰性掺杂和形貌调控研究进展[J]. 化工进展, 2019, 38(1): 457-466.
|
|
GUO Hongxia, Yan NAN, KOU Xiaochen, et al. Research on doping modification and morphology control of calcium-based CO2 sorbents[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 457-466.
|
12 |
CHEN Y N, LONG Y, SUN J, et al. Core-in-shell, cellulose-templated CaO-based sorbent pellets for CO2 capture at elevated temperatures[J]. Energy & Fuels, 2021, 35(16): 13215-13223.
|
13 |
SUN J, LIU W Q, HU Y C, et al. Structurally improved, core-in-shell, CaO-based sorbent pellets for CO2 capture[J]. Energy & Fuels, 2015, 29(10): 6636-6644.
|
14 |
SEDGHKERDAR M H, MAHINPEY N, SOLEIMANISALIM A H, et al. Core-shell structured CaO-based pellets protected by mesoporous ceramics shells for high-temperature CO2 capture[J]. The Canadian Journal of Chemical Engineering, 2016, 94(11): 2038-2044.
|
15 |
迟长云, 李英杰. 钙基碳载体造粒的捕集CO2特性及力学性能[J]. 化工进展, 2018, 37(12): 4908-4916.
|
|
CHI Changyun, LI Yingjie. CO2 capture performance and mechanical properties of granulated calcium-based sorbent[J]. Chemical Industry and Engineering Progress, 2018, 37(12): 4908-4916.
|
16 |
梁成. 生物质模板改性钙基吸收剂颗粒循环脱碳性能研究[D]. 南京: 南京师范大学, 2019.
|
|
LIANG Cheng. Study on cyclic CO2 capture performance of biomass-templated CaO-based sorbent pellets[D]. Nanjing: Nanjing Normal University, 2019.
|
17 |
ZHOU Y, CHEN Y N, LI W L, et al. High-temperature CO2 uptake and mechanical strength enhancement of the calcium aluminate cement-bound carbide slag pellets[J]. Energy & Fuels, 2021, 35(9): 8117-8125.
|
18 |
SUN J, WANG W Y, YANG Y D, et al. Reactivation mode investigation of spent CaO-based sorbent subjected to CO2 looping cycles or sulfation[J]. Fuel, 2020, 266: 117056.
|
19 |
RONG N, WU Y, WANG J H, et al. Steam reactivation of biotemplated CaO-based pellets for cyclic CO2 capture[J]. Energy & Fuels, 2021, 35(7): 6056-6067.
|
20 |
余志健, 段伦博, 苏成林, 等. 蒸汽活化水泥支撑钙基吸收剂活性及强度特性[J]. 化工学报, 2017, 68(4): 1637-1645.
|
|
YU Zhijian, DUAN Luobo, SU Chenglin, et al. Reactivity and strength of cement-supported calcium sorbent reactivated by steam for CO2 capture[J]. CIESC Journal, 2017, 68(4): 1637-1645.
|
21 |
GUO H X, YAN S L, ZHAO Y J, et al. Influence of water vapor on cyclic CO2 capture performance in both carbonation and decarbonation stages for Ca-Al mixed oxide[J]. Chemical Engineering Journal, 2019, 359: 542-551.
|
22 |
CHEN L Y, QIAN N. The effects of water vapor and coal ash on the carbonation behavior of CaO-sorbent supported by γ-Al2O3 for CO2 capture[J]. Fuel Processing Technology, 2018, 177: 200-209.
|
23 |
HE Z R, LI Y J, MA X T, et al. Influence of steam in carbonation stage on CO2 capture by Ca-based industrial waste during calcium looping cycles[J]. International Journal of Hydrogen Energy, 2016, 41(7): 4296-4304.
|
24 |
CHOU Y C, CHENG J Y, LIU W H, et al. Effects of steam addition during calcination on carbonation behavior in a calcination/carbonation loop[J]. Chemical Engineering & Technology, 2018, 41(10): 1921-1927.
|
25 |
SHOKROLLAHI Y M, RADFARNIA H R, ILIUTA M C. Influence of steam addition during carbonation or calcination on the CO2 capture performance of Ca9Al6O18 CaO sorbent[J]. Journal of Natural Gas Science and Engineering, 2016, 36: 1062-1069.
|
26 |
SILAKHORI M, JAFARIAN M, CHINNICI A, et al. Effects of steam on the kinetics of calcium carbonate calcination[J]. Chemical Engineering Science, 2021, 246: 116987.
|
27 |
HAN L, LIU Q, ZHANG Y, et al. A novel hybrid iron-calcium catalyst/absorbent for enhanced hydrogen production via catalytic tar reforming with in-situ CO2 capture[J]. International Journal of Hydrogen Energy, 2020, 45(18): 10709-10723.
|
28 |
马晓彤. 高效钙铝碳载体循环捕集CO2性能及其反应机理的密度泛函理论研究[D]. 济南:山东大学, 2019.
|
|
MA Xiaotong. Research on cyclic CO2 capture performance of Ca/Al sorbents and reaction mechanism by experiment and DTF caclculations[D]. Jinan: Shandong University, 2019.
|
29 |
DONG J, TANG Y J, NZIHOU A, et al. Effect of steam addition during carbonation, calcination or hydration on re-activation of CaO sorbent for CO2 capture[J]. Journal of CO2 Utilization, 2020, 39: 101167.
|
30 |
PHALAK N, DESHPANDE N, FAN L S. Investigation of high-temperature steam hydration of naturally derived calcium oxide for improved carbon dioxide capture capacity over multiple cycles[J]. Energy & Fuels, 2012, 26(6): 3903-3909.
|
31 |
DONAT F, FLORIN N H, ANTHONY E J, et al. Influence of high-temperature steam on the reactivity of CaO sorbent for CO2 capture[J]. Environmental Science & Technollogy, 2012, 46(2): 1262-1269.
|
32 |
RIDHA F N, WU Y, MANOVIC V, et al. Enhanced CO2 capture by biomass-templated Ca(OH)2-based pellets[J]. Chemical Engineering Journal, 2015, 274: 69-75.
|
33 |
GONZÁLEZ B, BLAMEY J, AL-JEBOORI M J, et al. Additive effects of steam addition and HBr doping for CaO-based sorbents for CO2 capture[J]. Chemical Engineering and Processing: Process Intensification, 2016, 103: 21-26.
|
34 |
XU Y Q, DING H R, LUO C, et al. Effect of lignin, cellulose and hemicellulose on calcium looping behavior of CaO-based sorbents derived from extrusion-spherization method[J]. Chemical Engineering Journal, 2018, 334: 2520-2529.
|
35 |
CHAMPAGNE S, LU D Y, SYMONDS R T, et al. The effect of steam addition to the calciner in a calcium looping pilot plant[J]. Powder Technology, 2016, 290: 114-123.
|