Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (6): 3049-3065.DOI: 10.16085/j.issn.1000-6613.2022-1418
• Materials science and technology • Previous Articles Next Articles
DONG Xiaoshan1(), WANG Jian1, LIN Fawei1, YAN Beibei1(), CHEN Guanyi1,2,3
Received:
2022-07-27
Revised:
2022-11-11
Online:
2023-06-29
Published:
2023-06-25
Contact:
YAN Beibei
董晓珊1(), 王建1, 林法伟1, 颜蓓蓓1(), 陈冠益1,2,3
通讯作者:
颜蓓蓓
作者简介:
董晓珊(1996—),女,博士研究生,研究方向为生物质焦油催化转化利用。E-mail:dongxiaoshan@tju.edu.cn。
基金资助:
CLC Number:
DONG Xiaoshan, WANG Jian, LIN Fawei, YAN Beibei, CHEN Guanyi. Exsolved metal nanoparticles on perovskite oxides: exsolution, driving force and control strategy[J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3049-3065.
董晓珊, 王建, 林法伟, 颜蓓蓓, 陈冠益. 基于钙钛矿氧化物的金属纳米粒子溶出策略:溶出过程、驱动力及控制策略[J]. 化工进展, 2023, 42(6): 3049-3065.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-1418
1 | 廖丰, 龙明策. 黏土负载型类Fenton催化剂的研究进展[J]. 化工进展, 2018, 37(9): 3401-3409. |
LIAO Feng, LONG Mingce. Recent progress on the clay supported Fenton-like catalyst[J]. Chemical Industry and Engineering Progress, 2018, 37(9): 3401-3409. | |
2 | KIM Seona, Areum JUN, KWON Ohhun, et al. Nanostructured double perovskite cathode with low sintering temperature for intermediate temperature solid oxide fuel cells[J]. ChemSusChem, 2015, 8(18): 3153-3158. |
3 | SCHLUPP M V, EVANS A, MARTYNCZUK J, et al. Micro-solid oxide fuel cell membranes prepared by aerosol-assisted chemical vapor deposition[J]. Advanced Energy Materials, 2014, 4(5): 1301383. |
4 | ARANDIA Aitor, REMIRO Aingeru, VALLE Beatriz, et al. Deactivation of Ni spinel derived catalyst during the oxidative steam reforming of raw bio-oil[J]. Fuel, 2020, 276: 117995. |
5 | OCHOA Aitor, ARAMBURU Borja, VALLE Beatriz, et al. Role of oxygenates and effect of operating conditions in the deactivation of a Ni supported catalyst during the steam reforming of bio-oil[J]. Green Chemistry, 2017, 19(18): 4315-4333. |
6 | 林俊明, 岑洁, 李正甲, 等. Ni基重整催化剂失活机理研究进展[J]. 化工进展, 2022, 41(1): 201-209. |
LIN Junming, CEN Jie, LI Zhengjia, et al. Development on deactivation mechanism of Ni-based reforming catalysts[J]. Chemical Industry and Engineering Progress, 2022, 41(1): 201-209. | |
7 | 刘嘉辉, 孙道安, 杜咏梅, 等. 芳烃蒸汽催化重整制氢研究进展[J]. 化工进展, 2021, 40(9): 4782-4790. |
LIU Jiahui, SUN Dao’an, DU Yongmei, et al. Progress on hydrogen production from catalytic steam reforming of aromatic hydrocarbons[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4782-4790. | |
8 | TANAKA Hirohisa, TAN Isao, UENISHI Mari, et al. Regeneration of palladium subsequent to solid solution and segregation in a perovskite catalyst: an intelligent catalyst[J]. Topics in Catalysis, 2001, 16(1/2/3/4): 63-70. |
9 | NISHIHATA Y, MIZUKI J, AKAO T, et al. Self-regeneration of a Pd-perovskite catalyst for automotive emissions control[J]. Nature, 2002, 418(6894): 164-167. |
10 | TANAKA Hirohisa, UENISHI Mari, TANIGUCHI Masashi, et al. Intelligent catalyst having the self-regenerative function of Pd, Rh and Pt for automotive emissions control[J]. Catalysis Today, 2006, 117(1/2/3): 321-328. |
11 | CUI Shaohua, LI Jianhui, ZHOU Xinwen, et al. Cobalt doped LaSrTiO3- δ as an anode catalyst: effect of Co nanoparticle precipitation on SOFCs operating on H2S-containing hydrogen[J]. Journal of Materials Chemistry A, 2013, 1(34): 9689-9696. |
12 | HUA Bin, LI Meng, SUN Yifei, et al. Enhancing perovskite electrocatalysis of solid oxide cells through controlled exsolution of nanoparticles[J]. ChemSusChem, 2017, 10(17): 3333-3341. |
13 | 王一帆, 孙毅飞, 盖鑫磊, 等. 纳/微异构型钙钛矿氧化物电极在固体氧化物燃料电池的研究进展[J]. 硅酸盐学报, 2021, 49(01): 70-82. |
WANG Yifan, SUN Yifei, GE Xinlei, et al. Recent development on nano-and micron-heteromorphism perovskite oxide nanofiber electrode for SOFC[J]. Journal of the Chinese Ceramic Society, 2021, 49(1): 70-82. | |
14 | GRABOWSKA Ewelina. Selected perovskite oxides: Characterization, preparation and photocatalytic properties—A review[J]. Applied Catalysis B: Environmental, 2016, 186: 97-126. |
15 | 陈彦广, 闫伟宁, 韩洪晶, 等. 钙钛矿氧化物的制备及其在环境保护中的应用[J]. 硅酸盐通报, 2016, 35(7): 2142-2148. |
CHEN Yanguang, YAN Weining, HAN Hongjing, et al. Preparation of perovskite oxide and its application in environmental protection[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(7): 2142-2148. | |
16 | 李翠翠, 张婷, 安静, 等. 三维有序大孔钙钛矿金属氧化物作为高效燃烧催化剂的研究进展[J]. 化工进展, 2021, 40(6): 3181-3190. |
LI Cuicui, ZHANG Ting, AN Jing, et al. Research progress of three-dimensional ordered macroporous perovskite metal oxides as highly efficient combustion catalysts[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3181-3190. | |
17 | 杨杰, 常辉, 隋志军, 等. 化学链催化甲烷氧化反应研究进展[J]. 化工进展, 2021, 40(4): 1928-1947. |
YANG Jie, CHANG Hui, SUI Zhijun, et al. Advances in chemical looping methane oxidation[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1928-1947. | |
18 | 程雅娣, 高建雄, 王焕磊, 等. 钙钛矿氧化物结构分析及其电催化析氢反应研究进展[J]. 分析化学, 2021, 49(6): 952-962. |
CHENG Yadi, GAO Jianxiong, WANG Huanlei, et al. Structure analysis of perovskite oxides and research progress on their electrocatalytic hydrogen evolution reaction[J]. Chinese Journal of Analytical Chemistry, 2021, 49(6): 952-962. | |
19 | 阚家伟, 李兵, 李林, 等. 含氯挥发性有机化合物催化燃烧催化剂的研究进展[J]. 化工进展, 2016, 35(2): 499-505. |
KAN Jiawei, LI Bing, LI Lin, et al. Advances in catalysts for catalytic combustion of chlorinated volatile organic compounds[J]. Chemical Industry and Engineering Progress, 2016, 35(2): 499-505. | |
20 | CAO T, KWON O, GORTE R J, et al. Metal exsolution to enhance the catalytic activity of electrodes in solid oxide fuel cells[J]. Nanomaterials, 2020, 10(12): 2445. |
21 | KATZ M B, ZHANG S, DUAN Y, et al. Reversible precipitation/dissolution of precious-metal clusters in perovskite-based catalyst materials: Bulk versus surface re-dispersion[J]. Journal of Cataltsis, 2012, 293: 145-148. |
22 | RAMAN A S, VOJVODIC A. Modeling exsolution of Pt from ATiO3 perovskites (A=Ca/Sr/Ba) using first-principles methods[J]. Chemistry of Materials, 2020, 32(22): 9642-9649. |
23 | OH T S, RAHANI E K, NEAGU D, et al. Evidence and model for strain-driven release of metal nanocatalysts from perovskites during exsolution[J]. Journal of Physical Chemistry Letters, 2015, 6(24): 5106-5110. |
24 | GAO Yang, CHEN Dengjie, SACCOCCIO Mattia, et al. From material design to mechanism study: Nanoscale Ni exsolution on a highly active A-site deficient anode material for solid oxide fuel cells[J]. Nano Energy, 2016, 27: 499-508. |
25 | NEAGU D, KYRIAKOU V, ROIBAN I L, et al. In situ observation of nanoparticle exsolution from perovskite oxides: From atomic scale mechanistic insight to nanostructure tailoring[J]. ACS Nano, 2019, 13(11): 12996-13005. |
26 | KWON Ohhun, KIM Kyeounghak, Sangwook JOO, et al. Self-assembled alloy nanoparticles in a layered double perovskite as a fuel oxidation catalyst for solid oxide fuel cells[J]. Journal of Materials Chemistry A, 2018, 6(33): 15947-15953. |
27 | NEAGU D, OH T S, MILLER D N, et al. Nano-socketed nickel particles with enhanced coking resistance grown in situ by redox exsolution[J]. Nature Communications, 2015, 6: 8120. |
28 | TANAKA Hirohisa, TANIGUCHI Masashi, UENISHI Mari, et al. Self-regenerating Rh- and Pt-based perovskite catalysts for automotive-emissions control[J]. Angewandte Chemie International Edition, 2006, 45(36): 5998-6002. |
29 | DU Zhihong, GONG Yue, ZHAO Hailei, et al. Unveiling the interface structure of the exsolved Co-Fe alloy nanoparticles from double perovskite and its application in solid oxide fuel cells[J]. ACS Applied Materials & Interfaces, 2021, 13(2): 3287-3294. |
30 | ZHANG Yuxuan, YU Zhouyang, TAO Youkun, et al. Insight into the electrochemical processes of the titanate electrode with in situ Ni exsolution for solid oxide cells[J]. ACS Applied Energy Materials, 2019, 2(6): 4033-4044. |
31 | Houfu LYU, LIU Tianfu, ZHANG Xiaomin, et al. Atomic-scale insight into exsolution of CoFe alloy nanoparticles in La0.4Sr0.6Co0.2Fe0.7Mo0.1O3- δ with efficient CO2 electrolysis[J]. Angewandte Chemie-International Edition, 2020, 59(37): 15968-15973. |
32 | SONG Yufei, WANG Wei, GE Lei, et al. Rational design of a water-storable hierarchical architecture decorated with amorphous barium oxide and nickel nanoparticles as a solid oxide fuel cell anode with excellent sulfur tolerance[J]. Advanced Science, 2017, 4(11): 1700337. |
33 | SUN Yifei, LI Jianhui, CUI Lin, et al. A-site-deficiency facilitated in situ growth of bimetallic Ni-Fe nano-alloys: A novel coking-tolerant fuel cell anode catalyst[J]. Nanoscale, 2015, 7(25): 11173-11181. |
34 | UENISHI Mari, TANIGUCHI Masashi, TANAKA Hirohisa, et al. Redox behavior of palladium at start-up in the perovskite-type LaFePdO x automotive catalysts showing a self-regenerative function[J]. Applied Catalysis B: Environmental, 2005, 57(4): 267-273. |
35 | Houfu LYU, LIN Le, ZHANG Xiaomin, et al. In situ investigation of reversible exsolution/dissolution of CoFe alloy nanoparticles in a Co-doped Sr2Fe1.5Mo0.5O6- δ cathode for CO2 electrolysis[J]. Advanced Materials, 2020, 32(6): 1906193. |
36 | LINDENTHAL Lorenz, POPOVIC Janko, RAMESHAN Raffael, et al. Novel perovskite catalysts for CO2 utilization-exsolution enhanced reverse water-gas shift activity[J]. Applied Catalysis B-Environmental, 2021, 292: 120183. |
37 | WANG Haiqian, DONG Xiaolei, ZHAO Tingting, et al. Dry reforming of methane over bimetallic Ni-Co catalyst prepared from La(Co x Ni1- x )0.5Fe0.5O3 perovskite precursor: Catalytic activity and coking resistance[J]. Applied Catalysis B: Environmental, 2019, 245: 302-313. |
38 | DEKA D J, KIM J, GUNDUZ S, et al. Investigation of hetero-phases grown via in-situ exsolution on a Ni-doped (La,Sr)FeO3 cathode and the resultant activity enhancement in CO2 reduction[J]. Applied Catalysis B: Environmental, 2021, 286: 119917. |
39 | GOTSCH T, SCHLICKER L, BEKHEET M F, et al. Structural investigations of La0.6Sr0.4FeO3- δ under reducing conditions: Kinetic and thermodynamic limitations for phase transformations and iron exsolution phenomena[J]. RSC Advances, 2018, 8(6): 3120-3131. |
40 | HAMADA Ikutaro, UOZUMI Akifumi, MORIKAWA Yoshitada, et al. A density functional theory study of self-regenerating catalysts LaFe1- x M x O3- y (M=Pd, Rh, Pt)[J]. Journal of the American Chemical Society, 2011, 133(46): 18506-18509. |
41 | TIAN Zhixue, UOZUMI Akifumi, HAMADA Ikutaro, et al. First-principles investigation on the segregation of Pd at LaFe1- x Pd x O3- y surfaces[J]. Nanoscale Research Letters, 2013, 8: 203. |
42 | KWON Ohhun, SENGODAN Sivaprakash, KIM Kyeounghak, et al. Exsolution trends and co-segregation aspects of self-grown catalyst nanoparticles in perovskites[J]. Nature Communications, 2017, 8: 15967. |
43 | YANG Chenghao, YANG Zhibin, JIN Chao, et al. Sulfur-tolerant redox-reversible anode material for direct hydrocarbon solid oxide fuel cells[J]. Advanced Materials, 2012, 24(11): 1439-1443. |
44 | DU Zhihong, ZHAO Hailei, YI Sha, et al. High-performance anode material Sr2FeMo0.65Ni0.35O6- δ with in situ exsolved nanoparticle catalyst[J]. ACS Nano, 2016, 10(9): 8660-8669. |
45 | SENGODAN Sivaprakash, CHOI Sihyuk, Areum JUN, et al. Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells[J]. Nature Materials, 2015, 14(2): 205-209. |
46 | SUN Yifei, ZHANG Yaqian, CHEN Jian, et al. New opportunity for in situ exsolution of metallic nanoparticles on perovskite parent[J]. Nano Letters, 2016, 16(8): 5303-5309. |
47 | WEBER M L, WILHELM M, JIN L, et al. Exsolution of embedded nanoparticles in defect engineered perovskite layers[J]. ACS Nano, 2021, 15(3): 4546-4560. |
48 | SUN Xiang, CHEN Huijun, YIN Yimei, et al. Progress of exsolved metal nanoparticles on oxides as high performance (electro)catalysts for the conversion of small molecules[J]. Small, 2021, 17(10): 2005383. |
49 | ZHANG Jiawei, GAO Minrui, LUO Jingli. In situ exsolved metal nanoparticles: A smart approach for optimization of catalysts[J]. Chemistry of Materials, 2020, 32(13): 5424-5241. |
50 | GUI Liangqi, PAN Guohong, MA Xing, et al. In-situ exsolution of CoNi alloy nanoparticles on LiFe0.8Co0.1Ni0.1O2 parent: New opportunity for boosting oxygen evolution and reduction reaction[J]. Applied Surface Science, 2021, 543: 148817. |
51 | Sangwook JOO, SEONG Arim, KWON Ohhun, et al. Highly active dry methane reforming catalysts with boosted in situ grown Ni-Fe nanoparticles on perovskite via atomic layer deposition[J]. Science Advances, 2020, 6(35): eabb1573. |
52 | NEAGU D, TSEKOURAS G, MILLER D N, et al. In situ growth of nanoparticles through control of non-stoichiometry[J]. Nature Chemistry, 2013, 5(11): 916-923. |
53 | Sangwook JOO, KWON Ohhun, KIM Kyeounghak, et al. Cation-swapped homogeneous nanoparticles in perovskite oxides for high power density[J]. Nature Communications, 2019, 10: 697. |
54 | WANG J, YANG J, OPITZ A K, et al. Tuning point defects by elastic strain modulates nanoparticle exsolution on perovskite oxides[J]. Chemistry of Materials, 2021, 33(13): 5021-5034. |
55 | LEE W, HAN J W, CHEN Y, et al. Cation size mismatch and charge interactions drive dopant segregation at the surfaces of manganite perovskites[J]. Journal of American Chemical Society, 2013, 135(21): 7909-7925. |
56 | NEAGU D, IRVINE J T. Structure and properties of La0.4Sr0.4TiO3 ceramics for use as anode materials in solid oxide fuel cells[J]. Chemistry of Materials, 2010, 22(17): 5042-5053. |
57 | FAN Weiwei, SUN Zhu, BAI Yu, et al. In situ growth of nanoparticles in A-site deficient ferrite perovskite as an advanced electrode for symmetrical solid oxide fuel cells[J]. Journal of Power Sources, 2020, 456: 228000. |
58 | GAO Y, LU Z, YOU T L, et al. Energetics of nanoparticle exsolution from perovskite oxides[J]. Journal of Physical Chemistry Letters, 2018, 9(13): 3772-3778. |
59 | WU Yujie, WANG Shuai, GAO Yue, et al. In situ growth of copper-iron bimetallic nanoparticles in A-site deficient Sr2Fe1.5Mo0.5O6- δ as an active anode material for solid oxide fuel cells[J]. Journal of Alloys and Compounds, 2022, 926: 166852. |
60 | GUO Jia, CAI Rongsheng, CALI Eleonora, et al. Low-temperature exsolution of Ni-Ru bimetallic nanoparticles from A-site deficient double perovskites[J]. Small, 2022, 18(43): 2107020. |
61 | MANAGUTTI P B, TYMEN S, LIU X, et al. Exsolution of Ni nanoparticles from A-site-deficient layered double perovskites for dry reforming of methane and as an anode material for a solid oxide fuel cell[J]. Acs Applied Materials & Interfaces, 2021, 13(30): 35719-35728. |
62 | CONG Yingge, GENG Zhibin, SUN Yu, et al. Cation segregation of A-site deficiency perovskite La0.85FeO3- δ nanoparticles toward high-performance cathode catalysts for rechargeable LiO2 battery[J]. Acs Applied Materials & Interfaces, 2018, 10(30): 25465-25472. |
63 | TSEKOURAS G, NEAGU D, IRVINE J T. Step-change in high temperature steam electrolysis performance of perovskite oxide cathodes with exsolution of B-site dopants[J]. Energy & Environmental Science, 2013, 6(1): 256-266. |
64 | Houfu LYU, LIN Le, ZHANG Xiaomin, et al. Promoting exsolution of RuFe alloy nanoparticles on Sr2Fe1.4Ru0.1Mo0.5O6- δ via repeated redox manipulations for CO2 electrolysis[J]. Nature Communications, 2021, 12(1): 5665. |
65 | NEAGU D, PAPAIOANNOU E I, RAMLI W K, et al. Demonstration of chemistry at a point through restructuring and catalytic activation at anchored nanoparticles[J]. Nature Communications, 2017, 8: 1855. |
66 | TANG Chenyang, KOUSI Kalliopi, NEAGU Dragos, et al. Towards efficient use of noble metals via exsolution exemplified for CO oxidation[J]. Nanoscale, 2019, 11(36): 16935-16944. |
67 | HAN H, PARK J, NAM S Y, et al. Lattice strain-enhanced exsolution of nanoparticles in thin films[J]. Nature Communitions, 2019, 10: 1471. |
68 | KIM J K, JO Y R, KIM S, et al. Exceptional tunability over size and density of spontaneously formed nanoparticles via nucleation dynamics[J]. Acs Applied Materials & Interfaces, 2020, 12(21): 24039-24047. |
69 | MYUNG J H, NEAGU D, MILLER D N, et al. Switching on electrocatalytic activity in solid oxide cells[J]. Nature, 2016, 537(7621): 528-531. |
70 | KHALID Hessan, Atta UL HAQ, ALESSI Bruno, et al. Rapid plasma exsolution from an A-site deficient perovskite oxide at room temperature[J]. Advanced Energy Materials, 2022, 12(45): 2201131. |
71 | LAI K Y, MANTHIRAM A. Evolution of exsolved nanoparticles on a perovskite oxide surface during a redox process[J]. Chem Mater, 2018, 30(8): 2838-2847. |
72 | MA Jiaojiao, GENG Zhibin, JIANG Yilan, et al. Exsolution manipulated local surface cobalt/iron alloying and dealloying conversion in La0.95Fe0.8Co0.2O3 perovskite for oxygen evolution reaction[J]. Journal of Alloys and Compounds, 2021, 854: 157154. |
73 | DIMITRAKOPOULOS G, GHONIEM A F, YILDIZ B. In situ catalyst exsolution on perovskite oxides for the production of CO and synthesis gas in ceramic membrane reactors[J]. Sustainable Energy & Fuels, 2019, 3(9): 2347-2355. |
74 | QIAO Sifan, QI Jingang, ZHANG Di, et al. Pulsed electric current boosts electrochemical performance and electro-conductivity of La x Sr1- x Cr y Ni1- y O3 perovskite via exsolution of nanoparticles[J]. Nanotechnology, 2019, 30(42): 425301. |
75 | 许爱晨, 商剑, 乔思凡, 等. 脉冲电流促进(La, Sr)(Ti, Ni)O3原位溶出金属纳米颗粒的研究[J]. 功能材料, 2020, 51(10): 10100-10104. |
XU Aichen, SHANG Jian, QIAO Sifan, et al. Study on the metal particles exsolutionin situ of (La,Sr)(Ti,Ni)O3 perovskite oxides via pulsed electric current technology[J]. Journal of Functional Materials, 2020, 51(10): 10100-10104. | |
76 | KYRIAKOU V, SHARMA R K, NEAGU D, et al. Plasma driven exsolution for nanoscale functionalization of perovskite oxides[J]. Small Methods, 2021, 5(12): 2100868. |
77 | WEI Tong, JIA Lichao, ZHENG Haoyu, et al. LaMnO3-based perovskite with in-situ exsolved Ni nanoparticles: a highly active, performance stable and coking resistant catalyst for CO2 dry reforming of CH4 [J]. Applied Catalysis A: General, 2018, 564: 199-207. |
78 | OH J, JOO S, LIM C, et al. Precise modulation of triple-phase boundaries towards a highly functional exsolved catalyst for dry reforming of methane under a dilution-free system[J]. Angewandte Chemie International Edition, 2022, 61(33): e202204990. |
79 | 杨晓幸, 苗鹤, 袁金良. 可逆固体氧化物燃料电池氧电极材料的研究进展[J]. 化工进展, 2021, 40(9): 4904-4917. |
YANG Xiaoxing, MIAO He, YUAN Jinliang. Research progress on oxygen electrode materials for reversible solid oxide fuel cells[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4904-4917. | |
80 | Sebastian VECINO-MANTILLA, Paola GAUTHIER-MARADEI, HUVE Marielle, et al. Nickel exsolution-driven phase transformation from an n=2 to an n=1 Ruddlesden-Popper manganite for methane steam reforming reaction in SOFC conditions[J]. ChemCatChem, 2019, 11(18): 4631-4641. |
81 | WANG Yao, LIU Tong, LI Mei, et al. Exsolved Fe-Ni nano-particles from Sr2Fe1.3Ni0.2Mo0.5O6 perovskite oxide as a cathode for solid oxide steam electrolysis cells[J]. Journal of Materials Chemistry A, 2016, 4(37): 14163-14169. |
82 | QIN Mingxia, XIAO Yu, YANG Hongyu, et al. Ru/Nb co-doped perovskite anode: Achieving good coking resistance in hydrocarbon fuels via core-shell nanocatalysts exsolution[J]. Applied Catalysis B-Environmental, 2021, 299: 120613. |
83 | JIANG Yilan, GENG Zhibin, YUAN Long, et al. Nanoscale architecture of RuO2/La0.9Fe0.92Ru0.08- x O3- δ composite via manipulating the exsolution of low Ru-substituted A-site deficient perovskite[J]. Acs Sustainable Chemistry & Engineering, 2018, 6(9): 11999-12005. |
84 | WANG Yarong, WANG Zhangjun, JIN Chao, et al. Enhanced overall water electrolysis on a bifunctional perovskite oxide through interfacial engineering[J]. Electrochimica Acta, 2019, 318: 120-129. |
85 | SUN Yifei, ZHANG Yaqian, YANG Yanling, et al. Smart tuning of 3D ordered electrocatalysts for enhanced oxygen reduction reaction[J]. Applied Catalysis B: Environmental, 2017, 219: 640-644. |
86 | SUN Yifei, YANG Yanling, CHEN Jian, et al. Toward a rational photocatalyst design: A new formation strategy of co-catalyst/semiconductor heterostructures via in situ exsolution[J]. Chemical Communications, 2018, 54(12): 1505-1508. |
87 | XU X, LIU G, AZAD A K. Visible light photocatalysis by in situ growth of plasmonic Ag nanoparticles upon AgTaO3 [J]. International Journal of Hydrogen Energy, 2015, 40(9): 3672-3678. |
88 | OH J H, KWON B W, CHO J, et al. Importance of exsolution in transition-metal (Co, Rh, and Ir)-doped LaCrO3 perovskite catalysts for boosting dry reforming of CH4 using CO2 for hydrogen production[J]. Industrial Engineering Chemistry Research, 2019, 58(16): 6385-6393. |
89 | JOO S, KIM K, KWON O, et al. Enhancing thermocatalytic activities by upshifting the d-band center of exsolved Co-Ni-Fe ternary alloy nanoparticles for the dry reforming of methane[J]. Angewandte Chemie International Edition, 2021, 60(29): 15912-15919. |
90 | YE Lingting, ZHANG Minyi, HUANG Ping, et al. Enhancing CO2 electrolysis through synergistic control of non-stoichiometry and doping to tune cathode surface structures[J]. Nature Communications, 2017, 8: 14785. |
91 | PARK Seongmin, KIM Yoongon, HAN Hyunsu, et al. In situ exsolved Co nanoparticles on Ruddlesden-Popper material as highly active catalyst for CO2 electrolysis to CO[J]. Applied Catalysis B: Environmental, 2019, 248: 147-156. |
92 | YANG Liming, XIE Kui, XU Shanshan, et al. Redox-reversible niobium-doped strontium titanate decorated with in situ grown nickel nanocatalyst for high-temperature direct steam electrolysis[J]. Dalton Transactions, 2014, 43(37): 14147-14157. |
93 | KYRIAKOU Vasileios, NEAGU Dragos, PAPAIOANNOU Evangelos I, et al. Co-electrolysis of H2O and CO2 on exsolved Ni nanoparticles for efficient syngas generation at controllable H2/CO ratios[J]. Applied Catalysis B: Environmental, 2019, 258: 117950. |
94 | YANG C H, YANG Z B, JIN C, et al. High performance solid oxide electrolysis cells using Pr0.8Sr1.2(Co,Fe)0.8Nb0.2O4+ δ -Co-Fe alloy hydrogen electrodes[J]. International Journal of Hydrogen Energy, 2013, 38(26): 11202-11208. |
95 | LI Qinghao, ZHOU Jun, FU Lei, et al. Fabrication of heterostructural Ru-SrTiO3 fibers through in-situ exsolution for visible-light-induced photocatalysis [J]. Journal of Alloys and Compounds, 2022, 925: 166747. |
[1] | ZHENG Qian, GUAN Xiushuai, JIN Shanbiao, ZHANG Changming, ZHANG Xiaochao. Photothermal catalysis synthesis of DMC from CO2 and methanol over Ce0.25Zr0.75O2 solid solution [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 319-327. |
[2] | ZHANG Zuoqun, GAO Yang, BAI Chaojie, XUE Lixin. Thin-film nanocomposite (TFN) mixed matrix reverse osmosis (MMRO) membranes from secondary interface polymerization containing in situ grown ZIF-8 nano-particles [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 364-373. |
[3] | WANG Zhengkun, LI Sifang. Green synthesis of gemini surfactant decyne diol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 400-410. |
[4] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[5] | GENG Yuanze, ZHOU Junhu, ZHANG Tianyou, ZHU Xiaoyu, YANG Weijuan. Homogeneous/heterogeneous coupled combustion of heptane in a partially packed bed burner [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4514-4521. |
[6] | GAO Yanjing. Analysis of international research trend of single-atom catalysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4667-4676. |
[7] | SHI Yu, ZHAO Yunchao, FAN Zhixuan, JIANG Dahua. Experimental study on the optimum phase change temperature of phase change roofs in hot summer and cold winter areas [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4828-4836. |
[8] | WANG Shangbin, OU Hongxiang, XUE Honglai, CAO Haizhen, WANG Junqi, BI Haipu. Effect of xanthan gum and nano silica on the properties of fluorine-free surfactant mixed solution foam [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4856-4862. |
[9] | LI Dongze, ZHANG Xiang, TIAN Jian, HU Pan, YAO Jie, ZHU Lin, BU Changsheng, WANG Xinye. Research progress of NO x reduction by carbonaceous substances for denitration in cement kiln [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4882-4893. |
[10] | WANG Chen, BAI Haoliang, KANG Xue. Performance study of high power UV-LED heat dissipation and nano-TiO2 photocatalytic acid red 26 coupling system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4905-4916. |
[11] | HUANG Yufei, LI Ziyi, HUANG Yangqiang, JIN Bo, LUO Xiao, LIANG Zhiwu. Research progress on catalysts for photocatalytic CO2 and CH4 reforming [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4247-4263. |
[12] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
[13] | XU Wei, LI Kaijun, SONG Linye, ZHANG Xinghui, YAO Shunhua. Research progress of photocatalysis and co-electrochemical degradation of VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3520-3531. |
[14] | XIE Zhiwei, WU Zhangyong, ZHU Qichen, JIANG Jiajun, LIANG Tianxiang, LIU Zhenyang. Viscosity properties and magnetoviscous effects of Ni0.5Zn0.5Fe2O4 vegetable oil-based magnetic fluid [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3623-3633. |
[15] | LI Yanling, ZHUO Zhen, CHI Liang, CHEN Xi, SUN Tanglei, LIU Peng, LEI Tingzhou. Research progress on preparation and application of nitrogen-doped biochar [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3720-3735. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |